Module monk.tf_keras_1.transforms.transforms
Expand source code
from tf_keras_1.transforms.imports import *
from system.imports import *
def transform_color_jitter(system_dict, brightness, contrast, saturation, hue, train, val, test, retrieve=False):
'''
Apply Color jittering transformations
Args:
system_dict (dict): System dictionary storing experiment state and set variables
brightness (float): Levels to jitter brightness.
0 - min
1 - max
contrast (float): Levels to jitter contrast.
0 - min
1 - max
saturation (float): Levels to jitter saturation.
0 - min
1 - max
hue (float): Levels to jitter hue.
0 - min
1 - max
train (bool): If True, transform applied to training data
val (bool): If True, transform applied to validation data
test (bool): If True, transform applied to testing/inferencing data
Returns:
dict: updated system dict
'''
tmp = {};
tmp["ColorJitter"] = {};
tmp["ColorJitter"]["brightness"] = brightness;
if(contrast or saturation or hue):
msg = "Unimplemented - contrast, saturation, hue.\n";
ConstraintWarning(msg);
tmp["ColorJitter"]["contrast"] = contrast;
tmp["ColorJitter"]["saturation"] = saturation;
tmp["ColorJitter"]["hue"] = hue;
if(train):
if(not retrieve):
system_dict["dataset"]["transforms"]["train"].append(tmp);
system_dict["local"]["transforms_train"]["brightness_range"] = [max(0, 1-brightness), 1+brightness];
if(val):
if(not retrieve):
system_dict["dataset"]["transforms"]["val"].append(tmp);
system_dict["local"]["transforms_val"]["brightness_range"] = [max(0, 1-brightness), 1+brightness];
if(test):
if(not retrieve):
system_dict["dataset"]["transforms"]["test"].append(tmp);
system_dict["local"]["transforms_test"]["brightness_range"] = [max(0, 1-brightness), 1+brightness];
return system_dict;
def transform_random_affine(system_dict, degrees, translate, scale, shear, train, val, test, retrieve=False):
'''
Apply random affine transformations
Args:
system_dict (dict): System dictionary storing experiment state and set variables
degrees (float): Max Rotation range limit for transforms
scale (float, list): Range for randomly scaling
shear (float, list): Range for randomly applying sheer changes
train (bool): If True, transform applied to training data
val (bool): If True, transform applied to validation data
test (bool): If True, transform applied to testing/inferencing data
Returns:
dict: updated system dict
'''
tmp = {};
tmp["RandomAffine"] = {};
tmp["RandomAffine"]["degrees"] = degrees;
tmp["RandomAffine"]["translate"] = translate;
tmp["RandomAffine"]["scale"] = scale;
tmp["RandomAffine"]["shear"] = shear;
if(train):
if(not retrieve):
system_dict["dataset"]["transforms"]["train"].append(tmp);
system_dict["local"]["transforms_train"]["rotation_range"] = degrees;
system_dict["local"]["transforms_train"]["width_shift_range"] = translate;
system_dict["local"]["transforms_train"]["height_shift_range"] = degrees;
system_dict["local"]["transforms_train"]["zoom_range"] = scale;
system_dict["local"]["transforms_train"]["shear_range"] = shear;
if(val):
if(not retrieve):
system_dict["dataset"]["transforms"]["val"].append(tmp);
system_dict["local"]["transforms_val"]["rotation_range"] = degrees;
system_dict["local"]["transforms_val"]["width_shift_range"] = translate;
system_dict["local"]["transforms_val"]["height_shift_range"] = degrees;
system_dict["local"]["transforms_val"]["zoom_range"] = scale;
system_dict["local"]["transforms_val"]["shear_range"] = shear;
if(test):
if(not retrieve):
system_dict["dataset"]["transforms"]["test"].append(tmp);
system_dict["local"]["transforms_test"]["rotation_range"] = degrees;
system_dict["local"]["transforms_test"]["width_shift_range"] = translate;
system_dict["local"]["transforms_test"]["height_shift_range"] = degrees;
system_dict["local"]["transforms_test"]["zoom_range"] = scale;
system_dict["local"]["transforms_test"]["shear_range"] = shear;
return system_dict;
def transform_random_horizontal_flip(system_dict, probability, train, val, test, retrieve=False):
'''
Apply random horizontal flip transformations
Args:
system_dict (dict): System dictionary storing experiment state and set variables
probability (float): Probability of flipping the input image
train (bool): If True, transform applied to training data
val (bool): If True, transform applied to validation data
test (bool): If True, transform applied to testing/inferencing data
Returns:
dict: updated system dict
'''
tmp = {};
tmp["RandomHorizontalFlip"] = {};
tmp["RandomHorizontalFlip"]["p"] = probability;
if(train):
if(not retrieve):
system_dict["dataset"]["transforms"]["train"].append(tmp);
system_dict["local"]["transforms_train"]["horizontal_flip"] = True;
if(val):
if(not retrieve):
system_dict["dataset"]["transforms"]["val"].append(tmp);
system_dict["local"]["transforms_val"]["horizontal_flip"] = True;
if(test):
if(not retrieve):
system_dict["dataset"]["transforms"]["test"].append(tmp);
system_dict["local"]["transforms_test"]["horizontal_flip"] = True;
return system_dict;
def transform_random_vertical_flip(system_dict, probability, train, val, test, retrieve=False):
'''
Apply random vertical flip transformations
Args:
system_dict (dict): System dictionary storing experiment state and set variables
probability (float): Probability of flipping the input image
train (bool): If True, transform applied to training data
val (bool): If True, transform applied to validation data
test (bool): If True, transform applied to testing/inferencing data
Returns:
dict: updated system dict
'''
tmp = {};
tmp["RandomVerticalFlip"] = {};
tmp["RandomVerticalFlip"]["p"] = probability;
if(train):
if(not retrieve):
system_dict["dataset"]["transforms"]["train"].append(tmp);
system_dict["local"]["transforms_train"]["horizontal_flip"] = True;
if(val):
if(not retrieve):
system_dict["dataset"]["transforms"]["val"].append(tmp);
system_dict["local"]["transforms_val"]["horizontal_flip"] = True;
if(test):
if(not retrieve):
system_dict["dataset"]["transforms"]["test"].append(tmp);
system_dict["local"]["transforms_test"]["horizontal_flip"] = True;
return system_dict;
def transform_random_rotation(system_dict, degrees, train, val, test, retrieve=False):
'''
Apply random rotation transformations
Args:
system_dict (dict): System dictionary storing experiment state and set variables
degrees (float): Max Rotation range limit for transforms
train (bool): If True, transform applied to training data
val (bool): If True, transform applied to validation data
test (bool): If True, transform applied to testing/inferencing data
Returns:
dict: updated system dict
'''
tmp = {};
tmp["RandomRotation"] = {};
tmp["RandomRotation"]["degrees"] = degrees;
if(train):
if(not retrieve):
system_dict["dataset"]["transforms"]["train"].append(tmp);
system_dict["local"]["transforms_train"]["rotation_range"] = degrees;
if(val):
if(not retrieve):
system_dict["dataset"]["transforms"]["val"].append(tmp);
system_dict["local"]["transforms_val"]["rotation_range"] = degrees;
if(test):
if(not retrieve):
system_dict["dataset"]["transforms"]["test"].append(tmp);
system_dict["local"]["transforms_test"]["rotation_range"] = degrees;
return system_dict;
def transform_mean_subtraction(system_dict, mean, train, val, test, retrieve=False):
'''
Apply mean subtraction
Args:
system_dict (dict): System dictionary storing experiment state and set variables
mean (float, list): Mean value for subtraction
train (bool): If True, transform applied to training data
val (bool): If True, transform applied to validation data
test (bool): If True, transform applied to testing/inferencing data
Returns:
dict: updated system dict
'''
tmp = {};
tmp["MeanSubtraction"] = {};
tmp["MeanSubtraction"]["mean"] = mean;
system_dict["local"]["mean_subtract"] = True;
if(train):
if(not retrieve):
system_dict["dataset"]["transforms"]["train"].append(tmp);
system_dict["local"]["transforms_train"]["mean"] = np.array(mean)*255;
system_dict["local"]["transforms_train"]["featurewise_center"] = True;
if(val):
if(not retrieve):
system_dict["dataset"]["transforms"]["val"].append(tmp);
system_dict["local"]["transforms_val"]["mean"] = np.array(mean)*255;
system_dict["local"]["transforms_val"]["featurewise_center"] = True;
if(test):
if(not retrieve):
system_dict["dataset"]["transforms"]["test"].append(tmp);
system_dict["local"]["transforms_test"]["mean"] = np.array(mean)*255;
system_dict["local"]["transforms_test"]["featurewise_center"] = True;
return system_dict;
def transform_normalize(system_dict, mean, std, train, val, test, retrieve=False):
'''
Apply mean subtraction and standard normalization
Args:
system_dict (dict): System dictionary storing experiment state and set variables
mean (float, list): Mean value for subtraction
std (float, list): Normalization factor
train (bool): If True, transform applied to training data
val (bool): If True, transform applied to validation data
test (bool): If True, transform applied to testing/inferencing data
Returns:
dict: updated system dict
'''
tmp = {};
tmp["Normalize"] = {};
tmp["Normalize"]["mean"] = mean;
tmp["Normalize"]["std"] = std;
system_dict["local"]["normalize"] = True;
input_size = system_dict["dataset"]["params"]["input_size"];
if(train):
if(not retrieve):
system_dict["dataset"]["transforms"]["train"].append(tmp);
system_dict["local"]["transforms_train"]["mean"] = np.array(mean)*255;
system_dict["local"]["transforms_train"]["std"] = np.array(std)*255;
system_dict["local"]["transforms_train"]["featurewise_center"] = True;
system_dict["local"]["transforms_train"]["featurewise_std_normalization"] = True;
if(val):
if(not retrieve):
system_dict["dataset"]["transforms"]["val"].append(tmp);
system_dict["local"]["transforms_val"]["mean"] = np.array(mean)*255;
system_dict["local"]["transforms_val"]["std"] = np.array(std)*255;
system_dict["local"]["transforms_val"]["featurewise_center"] = True;
system_dict["local"]["transforms_val"]["featurewise_std_normalization"] = True;
if(test):
if(not retrieve):
system_dict["dataset"]["transforms"]["test"].append(tmp);
system_dict["local"]["transforms_test"]["mean"] = np.array(mean)*255;
system_dict["local"]["transforms_test"]["std"] = np.array(std)*255;
system_dict["local"]["transforms_test"]["featurewise_center"] = True;
system_dict["local"]["transforms_test"]["featurewise_std_normalization"] = True;
return system_dict;
Functions
def transform_color_jitter(system_dict, brightness, contrast, saturation, hue, train, val, test, retrieve=False)
-
Apply Color jittering transformations
Args
system_dict
:dict
- System dictionary storing experiment state and set variables
brightness
:float
- Levels to jitter brightness. 0 - min 1 - max
contrast
:float
- Levels to jitter contrast. 0 - min 1 - max
saturation
:float
- Levels to jitter saturation. 0 - min 1 - max
hue
:float
- Levels to jitter hue. 0 - min 1 - max
train
:bool
- If True, transform applied to training data
val
:bool
- If True, transform applied to validation data
test
:bool
- If True, transform applied to testing/inferencing data
Returns
dict
- updated system dict
Expand source code
def transform_color_jitter(system_dict, brightness, contrast, saturation, hue, train, val, test, retrieve=False): ''' Apply Color jittering transformations Args: system_dict (dict): System dictionary storing experiment state and set variables brightness (float): Levels to jitter brightness. 0 - min 1 - max contrast (float): Levels to jitter contrast. 0 - min 1 - max saturation (float): Levels to jitter saturation. 0 - min 1 - max hue (float): Levels to jitter hue. 0 - min 1 - max train (bool): If True, transform applied to training data val (bool): If True, transform applied to validation data test (bool): If True, transform applied to testing/inferencing data Returns: dict: updated system dict ''' tmp = {}; tmp["ColorJitter"] = {}; tmp["ColorJitter"]["brightness"] = brightness; if(contrast or saturation or hue): msg = "Unimplemented - contrast, saturation, hue.\n"; ConstraintWarning(msg); tmp["ColorJitter"]["contrast"] = contrast; tmp["ColorJitter"]["saturation"] = saturation; tmp["ColorJitter"]["hue"] = hue; if(train): if(not retrieve): system_dict["dataset"]["transforms"]["train"].append(tmp); system_dict["local"]["transforms_train"]["brightness_range"] = [max(0, 1-brightness), 1+brightness]; if(val): if(not retrieve): system_dict["dataset"]["transforms"]["val"].append(tmp); system_dict["local"]["transforms_val"]["brightness_range"] = [max(0, 1-brightness), 1+brightness]; if(test): if(not retrieve): system_dict["dataset"]["transforms"]["test"].append(tmp); system_dict["local"]["transforms_test"]["brightness_range"] = [max(0, 1-brightness), 1+brightness]; return system_dict;
def transform_mean_subtraction(system_dict, mean, train, val, test, retrieve=False)
-
Apply mean subtraction
Args
system_dict
:dict
- System dictionary storing experiment state and set variables
mean
:float
,list
- Mean value for subtraction
train
:bool
- If True, transform applied to training data
val
:bool
- If True, transform applied to validation data
test
:bool
- If True, transform applied to testing/inferencing data
Returns
dict
- updated system dict
Expand source code
def transform_mean_subtraction(system_dict, mean, train, val, test, retrieve=False): ''' Apply mean subtraction Args: system_dict (dict): System dictionary storing experiment state and set variables mean (float, list): Mean value for subtraction train (bool): If True, transform applied to training data val (bool): If True, transform applied to validation data test (bool): If True, transform applied to testing/inferencing data Returns: dict: updated system dict ''' tmp = {}; tmp["MeanSubtraction"] = {}; tmp["MeanSubtraction"]["mean"] = mean; system_dict["local"]["mean_subtract"] = True; if(train): if(not retrieve): system_dict["dataset"]["transforms"]["train"].append(tmp); system_dict["local"]["transforms_train"]["mean"] = np.array(mean)*255; system_dict["local"]["transforms_train"]["featurewise_center"] = True; if(val): if(not retrieve): system_dict["dataset"]["transforms"]["val"].append(tmp); system_dict["local"]["transforms_val"]["mean"] = np.array(mean)*255; system_dict["local"]["transforms_val"]["featurewise_center"] = True; if(test): if(not retrieve): system_dict["dataset"]["transforms"]["test"].append(tmp); system_dict["local"]["transforms_test"]["mean"] = np.array(mean)*255; system_dict["local"]["transforms_test"]["featurewise_center"] = True; return system_dict;
def transform_normalize(system_dict, mean, std, train, val, test, retrieve=False)
-
Apply mean subtraction and standard normalization
Args
system_dict
:dict
- System dictionary storing experiment state and set variables
mean
:float
,list
- Mean value for subtraction
std
:float
,list
- Normalization factor
train
:bool
- If True, transform applied to training data
val
:bool
- If True, transform applied to validation data
test
:bool
- If True, transform applied to testing/inferencing data
Returns
dict
- updated system dict
Expand source code
def transform_normalize(system_dict, mean, std, train, val, test, retrieve=False): ''' Apply mean subtraction and standard normalization Args: system_dict (dict): System dictionary storing experiment state and set variables mean (float, list): Mean value for subtraction std (float, list): Normalization factor train (bool): If True, transform applied to training data val (bool): If True, transform applied to validation data test (bool): If True, transform applied to testing/inferencing data Returns: dict: updated system dict ''' tmp = {}; tmp["Normalize"] = {}; tmp["Normalize"]["mean"] = mean; tmp["Normalize"]["std"] = std; system_dict["local"]["normalize"] = True; input_size = system_dict["dataset"]["params"]["input_size"]; if(train): if(not retrieve): system_dict["dataset"]["transforms"]["train"].append(tmp); system_dict["local"]["transforms_train"]["mean"] = np.array(mean)*255; system_dict["local"]["transforms_train"]["std"] = np.array(std)*255; system_dict["local"]["transforms_train"]["featurewise_center"] = True; system_dict["local"]["transforms_train"]["featurewise_std_normalization"] = True; if(val): if(not retrieve): system_dict["dataset"]["transforms"]["val"].append(tmp); system_dict["local"]["transforms_val"]["mean"] = np.array(mean)*255; system_dict["local"]["transforms_val"]["std"] = np.array(std)*255; system_dict["local"]["transforms_val"]["featurewise_center"] = True; system_dict["local"]["transforms_val"]["featurewise_std_normalization"] = True; if(test): if(not retrieve): system_dict["dataset"]["transforms"]["test"].append(tmp); system_dict["local"]["transforms_test"]["mean"] = np.array(mean)*255; system_dict["local"]["transforms_test"]["std"] = np.array(std)*255; system_dict["local"]["transforms_test"]["featurewise_center"] = True; system_dict["local"]["transforms_test"]["featurewise_std_normalization"] = True; return system_dict;
def transform_random_affine(system_dict, degrees, translate, scale, shear, train, val, test, retrieve=False)
-
Apply random affine transformations
Args
system_dict
:dict
- System dictionary storing experiment state and set variables
degrees
:float
- Max Rotation range limit for transforms
scale
:float
,list
- Range for randomly scaling
shear
:float
,list
- Range for randomly applying sheer changes
train
:bool
- If True, transform applied to training data
val
:bool
- If True, transform applied to validation data
test
:bool
- If True, transform applied to testing/inferencing data
Returns
dict
- updated system dict
Expand source code
def transform_random_affine(system_dict, degrees, translate, scale, shear, train, val, test, retrieve=False): ''' Apply random affine transformations Args: system_dict (dict): System dictionary storing experiment state and set variables degrees (float): Max Rotation range limit for transforms scale (float, list): Range for randomly scaling shear (float, list): Range for randomly applying sheer changes train (bool): If True, transform applied to training data val (bool): If True, transform applied to validation data test (bool): If True, transform applied to testing/inferencing data Returns: dict: updated system dict ''' tmp = {}; tmp["RandomAffine"] = {}; tmp["RandomAffine"]["degrees"] = degrees; tmp["RandomAffine"]["translate"] = translate; tmp["RandomAffine"]["scale"] = scale; tmp["RandomAffine"]["shear"] = shear; if(train): if(not retrieve): system_dict["dataset"]["transforms"]["train"].append(tmp); system_dict["local"]["transforms_train"]["rotation_range"] = degrees; system_dict["local"]["transforms_train"]["width_shift_range"] = translate; system_dict["local"]["transforms_train"]["height_shift_range"] = degrees; system_dict["local"]["transforms_train"]["zoom_range"] = scale; system_dict["local"]["transforms_train"]["shear_range"] = shear; if(val): if(not retrieve): system_dict["dataset"]["transforms"]["val"].append(tmp); system_dict["local"]["transforms_val"]["rotation_range"] = degrees; system_dict["local"]["transforms_val"]["width_shift_range"] = translate; system_dict["local"]["transforms_val"]["height_shift_range"] = degrees; system_dict["local"]["transforms_val"]["zoom_range"] = scale; system_dict["local"]["transforms_val"]["shear_range"] = shear; if(test): if(not retrieve): system_dict["dataset"]["transforms"]["test"].append(tmp); system_dict["local"]["transforms_test"]["rotation_range"] = degrees; system_dict["local"]["transforms_test"]["width_shift_range"] = translate; system_dict["local"]["transforms_test"]["height_shift_range"] = degrees; system_dict["local"]["transforms_test"]["zoom_range"] = scale; system_dict["local"]["transforms_test"]["shear_range"] = shear; return system_dict;
def transform_random_horizontal_flip(system_dict, probability, train, val, test, retrieve=False)
-
Apply random horizontal flip transformations
Args
system_dict
:dict
- System dictionary storing experiment state and set variables
probability
:float
- Probability of flipping the input image
train
:bool
- If True, transform applied to training data
val
:bool
- If True, transform applied to validation data
test
:bool
- If True, transform applied to testing/inferencing data
Returns
dict
- updated system dict
Expand source code
def transform_random_horizontal_flip(system_dict, probability, train, val, test, retrieve=False): ''' Apply random horizontal flip transformations Args: system_dict (dict): System dictionary storing experiment state and set variables probability (float): Probability of flipping the input image train (bool): If True, transform applied to training data val (bool): If True, transform applied to validation data test (bool): If True, transform applied to testing/inferencing data Returns: dict: updated system dict ''' tmp = {}; tmp["RandomHorizontalFlip"] = {}; tmp["RandomHorizontalFlip"]["p"] = probability; if(train): if(not retrieve): system_dict["dataset"]["transforms"]["train"].append(tmp); system_dict["local"]["transforms_train"]["horizontal_flip"] = True; if(val): if(not retrieve): system_dict["dataset"]["transforms"]["val"].append(tmp); system_dict["local"]["transforms_val"]["horizontal_flip"] = True; if(test): if(not retrieve): system_dict["dataset"]["transforms"]["test"].append(tmp); system_dict["local"]["transforms_test"]["horizontal_flip"] = True; return system_dict;
def transform_random_rotation(system_dict, degrees, train, val, test, retrieve=False)
-
Apply random rotation transformations
Args
system_dict
:dict
- System dictionary storing experiment state and set variables
degrees
:float
- Max Rotation range limit for transforms
train
:bool
- If True, transform applied to training data
val
:bool
- If True, transform applied to validation data
test
:bool
- If True, transform applied to testing/inferencing data
Returns
dict
- updated system dict
Expand source code
def transform_random_rotation(system_dict, degrees, train, val, test, retrieve=False): ''' Apply random rotation transformations Args: system_dict (dict): System dictionary storing experiment state and set variables degrees (float): Max Rotation range limit for transforms train (bool): If True, transform applied to training data val (bool): If True, transform applied to validation data test (bool): If True, transform applied to testing/inferencing data Returns: dict: updated system dict ''' tmp = {}; tmp["RandomRotation"] = {}; tmp["RandomRotation"]["degrees"] = degrees; if(train): if(not retrieve): system_dict["dataset"]["transforms"]["train"].append(tmp); system_dict["local"]["transforms_train"]["rotation_range"] = degrees; if(val): if(not retrieve): system_dict["dataset"]["transforms"]["val"].append(tmp); system_dict["local"]["transforms_val"]["rotation_range"] = degrees; if(test): if(not retrieve): system_dict["dataset"]["transforms"]["test"].append(tmp); system_dict["local"]["transforms_test"]["rotation_range"] = degrees; return system_dict;
def transform_random_vertical_flip(system_dict, probability, train, val, test, retrieve=False)
-
Apply random vertical flip transformations
Args
system_dict
:dict
- System dictionary storing experiment state and set variables
probability
:float
- Probability of flipping the input image
train
:bool
- If True, transform applied to training data
val
:bool
- If True, transform applied to validation data
test
:bool
- If True, transform applied to testing/inferencing data
Returns
dict
- updated system dict
Expand source code
def transform_random_vertical_flip(system_dict, probability, train, val, test, retrieve=False): ''' Apply random vertical flip transformations Args: system_dict (dict): System dictionary storing experiment state and set variables probability (float): Probability of flipping the input image train (bool): If True, transform applied to training data val (bool): If True, transform applied to validation data test (bool): If True, transform applied to testing/inferencing data Returns: dict: updated system dict ''' tmp = {}; tmp["RandomVerticalFlip"] = {}; tmp["RandomVerticalFlip"]["p"] = probability; if(train): if(not retrieve): system_dict["dataset"]["transforms"]["train"].append(tmp); system_dict["local"]["transforms_train"]["horizontal_flip"] = True; if(val): if(not retrieve): system_dict["dataset"]["transforms"]["val"].append(tmp); system_dict["local"]["transforms_val"]["horizontal_flip"] = True; if(test): if(not retrieve): system_dict["dataset"]["transforms"]["test"].append(tmp); system_dict["local"]["transforms_test"]["horizontal_flip"] = True; return system_dict;