Module monk.tf_keras_1.training.params
Expand source code
from tf_keras_1.training.imports import *
from system.imports import *
def set_num_epochs(num_epochs, system_dict):
'''
Set number of training epochs
Args:
num_epochs (int): Number of epochs to train the network
system_dict (dict): System dictionary storing experiment state and set variables
Returns:
dict: updated system dict
'''
system_dict["hyper-parameters"]["num_epochs"] = num_epochs;
return system_dict;
def set_display_progress_realtime(value, system_dict):
'''
Set verbosity levels for iterations
Args:
value (bool): If True, displays progress for every iteration in the epoch
system_dict (dict): System dictionary storing experiment state and set variables
Returns:
dict: updated system dict
'''
system_dict["training"]["settings"]["display_progress_realtime"] = value;
return system_dict;
def set_display_progress(value, system_dict):
'''
Set all training params for epochs
Args:
value (bool): If True, displays summary post every epoch
system_dict (dict): System dictionary storing experiment state and set variables
Returns:
dict: updated system dict
'''
system_dict["training"]["settings"]["display_progress"] = value;
return system_dict;
def set_save_intermediate_models(value, system_dict):
'''
Set whether to save models post every epoch or not
Args:
value (bool): If True, saves model weight post every epoch
system_dict (dict): System dictionary storing experiment state and set variables
Returns:
dict: updated system dict
'''
system_dict["training"]["settings"]["save_intermediate_models"] = value;
return system_dict;
def set_save_training_logs(value, system_dict):
'''
Set whether to save training logs or not
Args:
value (bool): If True, saves all training and validation metrics. Required for comparison.
system_dict (dict): System dictionary storing experiment state and set variables
Returns:
dict: updated system dict
'''
system_dict["training"]["settings"]["save_training_logs"] = value;
return system_dict;
def set_intermediate_model_prefix(value, system_dict):
'''
Set a prefix to names of intermediate models being saved
Args:
value (str): Appends a prefix to intermediate weights
system_dict (dict): System dictionary storing experiment state and set variables
Returns:
dict: updated system dict
'''
system_dict["training"]["settings"]["intermediate_model_prefix"] = value;
return system_dict;
Functions
def set_display_progress(value, system_dict)
-
Set all training params for epochs
Args
value
:bool
- If True, displays summary post every epoch
system_dict
:dict
- System dictionary storing experiment state and set variables
Returns
dict
- updated system dict
Expand source code
def set_display_progress(value, system_dict): ''' Set all training params for epochs Args: value (bool): If True, displays summary post every epoch system_dict (dict): System dictionary storing experiment state and set variables Returns: dict: updated system dict ''' system_dict["training"]["settings"]["display_progress"] = value; return system_dict;
def set_display_progress_realtime(value, system_dict)
-
Set verbosity levels for iterations
Args
value
:bool
- If True, displays progress for every iteration in the epoch
system_dict
:dict
- System dictionary storing experiment state and set variables
Returns
dict
- updated system dict
Expand source code
def set_display_progress_realtime(value, system_dict): ''' Set verbosity levels for iterations Args: value (bool): If True, displays progress for every iteration in the epoch system_dict (dict): System dictionary storing experiment state and set variables Returns: dict: updated system dict ''' system_dict["training"]["settings"]["display_progress_realtime"] = value; return system_dict;
def set_intermediate_model_prefix(value, system_dict)
-
Set a prefix to names of intermediate models being saved
Args
value
:str
- Appends a prefix to intermediate weights
system_dict
:dict
- System dictionary storing experiment state and set variables
Returns
dict
- updated system dict
Expand source code
def set_intermediate_model_prefix(value, system_dict): ''' Set a prefix to names of intermediate models being saved Args: value (str): Appends a prefix to intermediate weights system_dict (dict): System dictionary storing experiment state and set variables Returns: dict: updated system dict ''' system_dict["training"]["settings"]["intermediate_model_prefix"] = value; return system_dict;
def set_num_epochs(num_epochs, system_dict)
-
Set number of training epochs
Args
num_epochs
:int
- Number of epochs to train the network
system_dict
:dict
- System dictionary storing experiment state and set variables
Returns
dict
- updated system dict
Expand source code
def set_num_epochs(num_epochs, system_dict): ''' Set number of training epochs Args: num_epochs (int): Number of epochs to train the network system_dict (dict): System dictionary storing experiment state and set variables Returns: dict: updated system dict ''' system_dict["hyper-parameters"]["num_epochs"] = num_epochs; return system_dict;
def set_save_intermediate_models(value, system_dict)
-
Set whether to save models post every epoch or not
Args
value
:bool
- If True, saves model weight post every epoch
system_dict
:dict
- System dictionary storing experiment state and set variables
Returns
dict
- updated system dict
Expand source code
def set_save_intermediate_models(value, system_dict): ''' Set whether to save models post every epoch or not Args: value (bool): If True, saves model weight post every epoch system_dict (dict): System dictionary storing experiment state and set variables Returns: dict: updated system dict ''' system_dict["training"]["settings"]["save_intermediate_models"] = value; return system_dict;
def set_save_training_logs(value, system_dict)
-
Set whether to save training logs or not
Args
value
:bool
- If True, saves all training and validation metrics. Required for comparison.
system_dict
:dict
- System dictionary storing experiment state and set variables
Returns
dict
- updated system dict
Expand source code
def set_save_training_logs(value, system_dict): ''' Set whether to save training logs or not Args: value (bool): If True, saves all training and validation metrics. Required for comparison. system_dict (dict): System dictionary storing experiment state and set variables Returns: dict: updated system dict ''' system_dict["training"]["settings"]["save_training_logs"] = value; return system_dict;