Module monk.tf_keras_1.schedulers.schedulers
Expand source code
from tf_keras_1.schedulers.imports import *
from system.imports import *
def scheduler_fixed(system_dict):
'''
Set learning rate fixed
Args:
system_dict (dict): System dictionary storing experiment state and set variables
Returns:
dict: updated system dict
'''
system_dict["local"]["learning_rate_scheduler"] = None;
system_dict["hyper-parameters"]["learning_rate_scheduler"]["name"] = "fixed";
return system_dict;
def scheduler_step(system_dict, step_size, gamma=0.1, last_epoch=-1):
'''
Set learning rate to decrease in regular steps
Args:
system_dict (dict): System dictionary storing experiment state and set variables
step_size (int): Step interval for decreasing learning rate
gamma (str): Reduction multiplier for reducing learning rate post every step
last_epoch (int): Set this epoch to a level post which learning rate will not be decreased
Returns:
dict: updated system dict
'''
system_dict["local"]["learning_rate_scheduler"] = "steplr";
system_dict["hyper-parameters"]["learning_rate_scheduler"]["name"] = "steplr";
system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["step_size"] = step_size;
system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["gamma"] = gamma;
system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["last_epoch"] = last_epoch;
return system_dict;
def scheduler_exponential(system_dict, gamma, last_epoch=-1):
'''
Set learning rate to decrease exponentially every step
Args:
system_dict (dict): System dictionary storing experiment state and set variables
gamma (str): Reduction multiplier for reducing learning rate post every step
last_epoch (int): Set this epoch to a level post which learning rate will not be decreased
Returns:
dict: updated system dict
'''
system_dict["local"]["learning_rate_scheduler"] = "exponential";
system_dict["hyper-parameters"]["learning_rate_scheduler"]["name"] = "exponential";
system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["gamma"] = gamma;
system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["last_epoch"] = last_epoch;
return system_dict;
def scheduler_plateau(system_dict, mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001,
threshold_mode='rel', cooldown=0, min_lr=0, epsilon=1e-08):
'''
Set learning rate to decrease if a metric (loss) stagnates in a plateau
Args:
system_dict (dict): System dictionary storing experiment state and set variables
mode (str): Either of
- 'min' : lr will be reduced when the quantity monitored (loss) has stopped decreasing;
- 'max' : lr reduced when the quantity monitored (accuracy) has stopped increasing.
factor (float): Reduction multiplier for reducing learning rate post every step
patience (int): Number of epochs to wait before reducing learning rate
verbose (bool): If True, all computations and wait times are printed
threshold (float): Preset fixed to 0.0001
threshold_mode (str): Preset fixed to 'rel' mode
cooldown (int): Number of epochs to wait before actually applying the scheduler post the actual designated step
min_lr (float): Set minimum learning rate, post which it will not be decreased
epsilon (float): A small value to avoid divison by zero.
last_epoch (int): Set this epoch to a level post which learning rate will not be decreased
Returns:
dict: updated system dict
'''
system_dict["local"]["learning_rate_scheduler"] = "reduceonplateaulr";
system_dict["hyper-parameters"]["learning_rate_scheduler"]["name"] = "reduceonplateaulr";
system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["mode"] = mode;
system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["factor"] = factor;
system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["patience"] = patience;
system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["verbose"] = verbose;
system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["threshold"] = threshold;
system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["threshold_mode"] = threshold_mode;
system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["cooldown"] = cooldown;
system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["min_lr"] = min_lr;
system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["epsilon"] = epsilon;
return system_dict;
Functions
def scheduler_exponential(system_dict, gamma, last_epoch=-1)
-
Set learning rate to decrease exponentially every step
Args
system_dict
:dict
- System dictionary storing experiment state and set variables
gamma
:str
- Reduction multiplier for reducing learning rate post every step
last_epoch
:int
- Set this epoch to a level post which learning rate will not be decreased
Returns
dict
- updated system dict
Expand source code
def scheduler_exponential(system_dict, gamma, last_epoch=-1): ''' Set learning rate to decrease exponentially every step Args: system_dict (dict): System dictionary storing experiment state and set variables gamma (str): Reduction multiplier for reducing learning rate post every step last_epoch (int): Set this epoch to a level post which learning rate will not be decreased Returns: dict: updated system dict ''' system_dict["local"]["learning_rate_scheduler"] = "exponential"; system_dict["hyper-parameters"]["learning_rate_scheduler"]["name"] = "exponential"; system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["gamma"] = gamma; system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["last_epoch"] = last_epoch; return system_dict;
def scheduler_fixed(system_dict)
-
Set learning rate fixed
Args
system_dict
:dict
- System dictionary storing experiment state and set variables
Returns
dict
- updated system dict
Expand source code
def scheduler_fixed(system_dict): ''' Set learning rate fixed Args: system_dict (dict): System dictionary storing experiment state and set variables Returns: dict: updated system dict ''' system_dict["local"]["learning_rate_scheduler"] = None; system_dict["hyper-parameters"]["learning_rate_scheduler"]["name"] = "fixed"; return system_dict;
def scheduler_plateau(system_dict, mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, epsilon=1e-08)
-
Set learning rate to decrease if a metric (loss) stagnates in a plateau
Args
system_dict
:dict
- System dictionary storing experiment state and set variables
mode
:str
- Either of - 'min' : lr will be reduced when the quantity monitored (loss) has stopped decreasing; - 'max' : lr reduced when the quantity monitored (accuracy) has stopped increasing.
factor
:float
- Reduction multiplier for reducing learning rate post every step
patience
:int
- Number of epochs to wait before reducing learning rate
verbose
:bool
- If True, all computations and wait times are printed
threshold
:float
- Preset fixed to 0.0001
threshold_mode
:str
- Preset fixed to 'rel' mode
cooldown
:int
- Number of epochs to wait before actually applying the scheduler post the actual designated step
min_lr
:float
- Set minimum learning rate, post which it will not be decreased
epsilon
:float
- A small value to avoid divison by zero.
last_epoch
:int
- Set this epoch to a level post which learning rate will not be decreased
Returns
dict
- updated system dict
Expand source code
def scheduler_plateau(system_dict, mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, epsilon=1e-08): ''' Set learning rate to decrease if a metric (loss) stagnates in a plateau Args: system_dict (dict): System dictionary storing experiment state and set variables mode (str): Either of - 'min' : lr will be reduced when the quantity monitored (loss) has stopped decreasing; - 'max' : lr reduced when the quantity monitored (accuracy) has stopped increasing. factor (float): Reduction multiplier for reducing learning rate post every step patience (int): Number of epochs to wait before reducing learning rate verbose (bool): If True, all computations and wait times are printed threshold (float): Preset fixed to 0.0001 threshold_mode (str): Preset fixed to 'rel' mode cooldown (int): Number of epochs to wait before actually applying the scheduler post the actual designated step min_lr (float): Set minimum learning rate, post which it will not be decreased epsilon (float): A small value to avoid divison by zero. last_epoch (int): Set this epoch to a level post which learning rate will not be decreased Returns: dict: updated system dict ''' system_dict["local"]["learning_rate_scheduler"] = "reduceonplateaulr"; system_dict["hyper-parameters"]["learning_rate_scheduler"]["name"] = "reduceonplateaulr"; system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["mode"] = mode; system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["factor"] = factor; system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["patience"] = patience; system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["verbose"] = verbose; system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["threshold"] = threshold; system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["threshold_mode"] = threshold_mode; system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["cooldown"] = cooldown; system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["min_lr"] = min_lr; system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["epsilon"] = epsilon; return system_dict;
def scheduler_step(system_dict, step_size, gamma=0.1, last_epoch=-1)
-
Set learning rate to decrease in regular steps
Args
system_dict
:dict
- System dictionary storing experiment state and set variables
step_size
:int
- Step interval for decreasing learning rate
gamma
:str
- Reduction multiplier for reducing learning rate post every step
last_epoch
:int
- Set this epoch to a level post which learning rate will not be decreased
Returns
dict
- updated system dict
Expand source code
def scheduler_step(system_dict, step_size, gamma=0.1, last_epoch=-1): ''' Set learning rate to decrease in regular steps Args: system_dict (dict): System dictionary storing experiment state and set variables step_size (int): Step interval for decreasing learning rate gamma (str): Reduction multiplier for reducing learning rate post every step last_epoch (int): Set this epoch to a level post which learning rate will not be decreased Returns: dict: updated system dict ''' system_dict["local"]["learning_rate_scheduler"] = "steplr"; system_dict["hyper-parameters"]["learning_rate_scheduler"]["name"] = "steplr"; system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["step_size"] = step_size; system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["gamma"] = gamma; system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["last_epoch"] = last_epoch; return system_dict;