Module monk.tf_keras_1.schedulers.return_scheduler
Expand source code
from tf_keras_1.schedulers.imports import *
from system.imports import *
from tf_keras_1.schedulers.common import StepDecay
from tf_keras_1.schedulers.common import PolynomialDecay
def load_scheduler(system_dict):
'''
Load schedulers for training state
Args:
system_dict (dict): System dictionary storing experiment state and set variables
Returns:
dict: updated system dict
'''
learning_rate_scheduler = system_dict["local"]["learning_rate_scheduler"];
optimizer = system_dict["local"]["optimizer"];
learning_rate = system_dict["hyper-parameters"]["learning_rate"];
if(learning_rate_scheduler == "steplr"):
system_dict["local"]["learning_rate_scheduler"] = StepDecay(
initAlpha=learning_rate,
factor=system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["gamma"],
dropEvery=system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["step_size"]);
elif(learning_rate_scheduler == "exponentiallr"):
system_dict["local"]["learning_rate_scheduler"] = PolynomialDecay(
maxEpochs=100,
initAlpha=learning_rate,
power=system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["gamma"]);
elif(learning_rate_scheduler == "reduceonplateaulr"):
system_dict["local"]["learning_rate_scheduler"] = krc.ReduceLROnPlateau(
monitor='val_loss',
factor=system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["factor"],
patience=system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["patience"],
verbose=system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["verbose"],
mode=system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["mode"],
min_delta=system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["threshold"],
cooldown=system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["cooldown"],
min_lr=system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["min_lr"]);
return system_dict;
Functions
def load_scheduler(system_dict)
-
Load schedulers for training state
Args
system_dict
:dict
- System dictionary storing experiment state and set variables
Returns
dict
- updated system dict
Expand source code
def load_scheduler(system_dict): ''' Load schedulers for training state Args: system_dict (dict): System dictionary storing experiment state and set variables Returns: dict: updated system dict ''' learning_rate_scheduler = system_dict["local"]["learning_rate_scheduler"]; optimizer = system_dict["local"]["optimizer"]; learning_rate = system_dict["hyper-parameters"]["learning_rate"]; if(learning_rate_scheduler == "steplr"): system_dict["local"]["learning_rate_scheduler"] = StepDecay( initAlpha=learning_rate, factor=system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["gamma"], dropEvery=system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["step_size"]); elif(learning_rate_scheduler == "exponentiallr"): system_dict["local"]["learning_rate_scheduler"] = PolynomialDecay( maxEpochs=100, initAlpha=learning_rate, power=system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["gamma"]); elif(learning_rate_scheduler == "reduceonplateaulr"): system_dict["local"]["learning_rate_scheduler"] = krc.ReduceLROnPlateau( monitor='val_loss', factor=system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["factor"], patience=system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["patience"], verbose=system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["verbose"], mode=system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["mode"], min_delta=system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["threshold"], cooldown=system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["cooldown"], min_lr=system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]["min_lr"]); return system_dict;