Module monk.tf_keras_1.finetune.level_2_model_base
Expand source code
from tf_keras_1.finetune.imports import *
from system.imports import *
from tf_keras_1.finetune.level_1_dataset_base import finetune_dataset
class finetune_model(finetune_dataset):
'''
Base class for Model setup
Args:
verbose (int): Set verbosity levels
0 - Print Nothing
1 - Print desired details
'''
def __init__(self, verbose=1):
super().__init__(verbose=verbose);
###############################################################################################################################################
def set_model_final(self, path=False):
'''
Setup model based on set parameters
Args:
path (str): Dummy variable
Returns:
None
'''
self.custom_print("Model Details");
if(self.system_dict["model"]["params"]["model_path"]):
if(os.path.isfile(self.system_dict["model"]["params"]["model_path"])):
self.custom_print(" Loading model - {}".format(self.system_dict["model"]["params"]["model_path"]));
self.system_dict = setup_device_environment(self.system_dict);
self.system_dict["local"]["model"] = load_model(self.system_dict, external_path=self.system_dict["model"]["params"]["model_path"]);
self.custom_print(" Model loaded!");
self.custom_print("");
self.system_dict = get_num_layers(self.system_dict);
self.system_dict = get_num_trainable_layers(self.system_dict);
self.system_dict["model"]["status"] = True;
else:
msg = "Model not found - {}\n".format(self.system_dict["model"]["params"]["model_path"]);
msg += "Previous Training Incomplete.";
raise ConstraintError(msg);
elif(self.system_dict["states"]["eval_infer"]):
if(os.path.isfile(self.system_dict["model_dir_relative"] + 'final.h5')):
self.custom_print(" Loading model - {}".format(self.system_dict["model_dir_relative"] + 'final.h5'));
self.system_dict = setup_device_environment(self.system_dict);
self.system_dict["local"]["model"] = load_model(self.system_dict, final=True);
self.custom_print(" Model loaded!");
self.custom_print("");
else:
msg = "Model not found - {}\n".format(self.system_dict["model_dir_relative"] + 'final.h5');
msg += "Previous Training Incomplete.";
raise ConstraintError(msg);
else:
if(self.system_dict["states"]["resume_train"]):
if(os.path.isfile(self.system_dict["model_dir_relative"] + 'resume_state.h5')):
self.custom_print(" Loading model - {}".format(self.system_dict["model_dir_relative"] + 'resume_state.h5'));
self.system_dict = setup_device_environment(self.system_dict);
self.system_dict["local"]["model"] = load_model(self.system_dict, resume=True);
else:
msg = "Model not found - \"{}\"\n".format(self.system_dict["model_dir_relative"] + 'resume_state.h5');
msg += "Training not started. Cannot Run resume Mode";
raise ConstraintError(msg);
elif(self.system_dict["states"]["copy_from"]):
model_path = self.system_dict["master_systems_dir_relative"] + self.system_dict["origin"][0] + "/" + self.system_dict["origin"][1] + "/output/models/";
if(os.path.isfile(model_path + 'final.h5')):
self.custom_print(" Loading model - {}".format(model_path + 'final.h5'));
self.system_dict = setup_device_environment(self.system_dict);
self.system_dict["local"]["model"] = load_model(self.system_dict, path=model_path, final=True);
else:
msg = "Model not found - {}\n".format(model_path + "final.h5");
msg += "Previous Training Incomplete.";
raise ConstraintError(msg);
else:
self.custom_print(" Loading pretrained model");
self.system_dict = setup_device_environment(self.system_dict);
self.system_dict = setup_model(self.system_dict);
self.custom_print(" Model Loaded on device");
self.system_dict = get_num_layers(self.system_dict);
self.system_dict = get_num_trainable_layers(self.system_dict);
self.system_dict["model"]["status"] = True;
if(self.system_dict["model"]["type"] == "custom"):
self.custom_print(" Model name: {}".format("Custom Model"));
else:
self.custom_print(" Model name: {}".format(self.system_dict["model"]["params"]["model_name"]));
self.custom_print(" Num layers in model: {}".format(self.system_dict["model"]["params"]["num_layers"]));
self.custom_print(" Num trainable layers: {}".format(self.system_dict["model"]["params"]["num_params_to_update"]));
self.custom_print("");
###############################################################################################################################################
Classes
class finetune_model (verbose=1)
-
Base class for Model setup
Args
verbose
:int
- Set verbosity levels 0 - Print Nothing 1 - Print desired details
Expand source code
class finetune_model(finetune_dataset): ''' Base class for Model setup Args: verbose (int): Set verbosity levels 0 - Print Nothing 1 - Print desired details ''' def __init__(self, verbose=1): super().__init__(verbose=verbose); ############################################################################################################################################### def set_model_final(self, path=False): ''' Setup model based on set parameters Args: path (str): Dummy variable Returns: None ''' self.custom_print("Model Details"); if(self.system_dict["model"]["params"]["model_path"]): if(os.path.isfile(self.system_dict["model"]["params"]["model_path"])): self.custom_print(" Loading model - {}".format(self.system_dict["model"]["params"]["model_path"])); self.system_dict = setup_device_environment(self.system_dict); self.system_dict["local"]["model"] = load_model(self.system_dict, external_path=self.system_dict["model"]["params"]["model_path"]); self.custom_print(" Model loaded!"); self.custom_print(""); self.system_dict = get_num_layers(self.system_dict); self.system_dict = get_num_trainable_layers(self.system_dict); self.system_dict["model"]["status"] = True; else: msg = "Model not found - {}\n".format(self.system_dict["model"]["params"]["model_path"]); msg += "Previous Training Incomplete."; raise ConstraintError(msg); elif(self.system_dict["states"]["eval_infer"]): if(os.path.isfile(self.system_dict["model_dir_relative"] + 'final.h5')): self.custom_print(" Loading model - {}".format(self.system_dict["model_dir_relative"] + 'final.h5')); self.system_dict = setup_device_environment(self.system_dict); self.system_dict["local"]["model"] = load_model(self.system_dict, final=True); self.custom_print(" Model loaded!"); self.custom_print(""); else: msg = "Model not found - {}\n".format(self.system_dict["model_dir_relative"] + 'final.h5'); msg += "Previous Training Incomplete."; raise ConstraintError(msg); else: if(self.system_dict["states"]["resume_train"]): if(os.path.isfile(self.system_dict["model_dir_relative"] + 'resume_state.h5')): self.custom_print(" Loading model - {}".format(self.system_dict["model_dir_relative"] + 'resume_state.h5')); self.system_dict = setup_device_environment(self.system_dict); self.system_dict["local"]["model"] = load_model(self.system_dict, resume=True); else: msg = "Model not found - \"{}\"\n".format(self.system_dict["model_dir_relative"] + 'resume_state.h5'); msg += "Training not started. Cannot Run resume Mode"; raise ConstraintError(msg); elif(self.system_dict["states"]["copy_from"]): model_path = self.system_dict["master_systems_dir_relative"] + self.system_dict["origin"][0] + "/" + self.system_dict["origin"][1] + "/output/models/"; if(os.path.isfile(model_path + 'final.h5')): self.custom_print(" Loading model - {}".format(model_path + 'final.h5')); self.system_dict = setup_device_environment(self.system_dict); self.system_dict["local"]["model"] = load_model(self.system_dict, path=model_path, final=True); else: msg = "Model not found - {}\n".format(model_path + "final.h5"); msg += "Previous Training Incomplete."; raise ConstraintError(msg); else: self.custom_print(" Loading pretrained model"); self.system_dict = setup_device_environment(self.system_dict); self.system_dict = setup_model(self.system_dict); self.custom_print(" Model Loaded on device"); self.system_dict = get_num_layers(self.system_dict); self.system_dict = get_num_trainable_layers(self.system_dict); self.system_dict["model"]["status"] = True; if(self.system_dict["model"]["type"] == "custom"): self.custom_print(" Model name: {}".format("Custom Model")); else: self.custom_print(" Model name: {}".format(self.system_dict["model"]["params"]["model_name"])); self.custom_print(" Num layers in model: {}".format(self.system_dict["model"]["params"]["num_layers"])); self.custom_print(" Num trainable layers: {}".format(self.system_dict["model"]["params"]["num_params_to_update"])); self.custom_print("");
Ancestors
- tf_keras_1.finetune.level_1_dataset_base.finetune_dataset
- system.base_class.system
Methods
def set_model_final(self, path=False)
-
Setup model based on set parameters
Args
path
:str
- Dummy variable
Returns
None
Expand source code
def set_model_final(self, path=False): ''' Setup model based on set parameters Args: path (str): Dummy variable Returns: None ''' self.custom_print("Model Details"); if(self.system_dict["model"]["params"]["model_path"]): if(os.path.isfile(self.system_dict["model"]["params"]["model_path"])): self.custom_print(" Loading model - {}".format(self.system_dict["model"]["params"]["model_path"])); self.system_dict = setup_device_environment(self.system_dict); self.system_dict["local"]["model"] = load_model(self.system_dict, external_path=self.system_dict["model"]["params"]["model_path"]); self.custom_print(" Model loaded!"); self.custom_print(""); self.system_dict = get_num_layers(self.system_dict); self.system_dict = get_num_trainable_layers(self.system_dict); self.system_dict["model"]["status"] = True; else: msg = "Model not found - {}\n".format(self.system_dict["model"]["params"]["model_path"]); msg += "Previous Training Incomplete."; raise ConstraintError(msg); elif(self.system_dict["states"]["eval_infer"]): if(os.path.isfile(self.system_dict["model_dir_relative"] + 'final.h5')): self.custom_print(" Loading model - {}".format(self.system_dict["model_dir_relative"] + 'final.h5')); self.system_dict = setup_device_environment(self.system_dict); self.system_dict["local"]["model"] = load_model(self.system_dict, final=True); self.custom_print(" Model loaded!"); self.custom_print(""); else: msg = "Model not found - {}\n".format(self.system_dict["model_dir_relative"] + 'final.h5'); msg += "Previous Training Incomplete."; raise ConstraintError(msg); else: if(self.system_dict["states"]["resume_train"]): if(os.path.isfile(self.system_dict["model_dir_relative"] + 'resume_state.h5')): self.custom_print(" Loading model - {}".format(self.system_dict["model_dir_relative"] + 'resume_state.h5')); self.system_dict = setup_device_environment(self.system_dict); self.system_dict["local"]["model"] = load_model(self.system_dict, resume=True); else: msg = "Model not found - \"{}\"\n".format(self.system_dict["model_dir_relative"] + 'resume_state.h5'); msg += "Training not started. Cannot Run resume Mode"; raise ConstraintError(msg); elif(self.system_dict["states"]["copy_from"]): model_path = self.system_dict["master_systems_dir_relative"] + self.system_dict["origin"][0] + "/" + self.system_dict["origin"][1] + "/output/models/"; if(os.path.isfile(model_path + 'final.h5')): self.custom_print(" Loading model - {}".format(model_path + 'final.h5')); self.system_dict = setup_device_environment(self.system_dict); self.system_dict["local"]["model"] = load_model(self.system_dict, path=model_path, final=True); else: msg = "Model not found - {}\n".format(model_path + "final.h5"); msg += "Previous Training Incomplete."; raise ConstraintError(msg); else: self.custom_print(" Loading pretrained model"); self.system_dict = setup_device_environment(self.system_dict); self.system_dict = setup_model(self.system_dict); self.custom_print(" Model Loaded on device"); self.system_dict = get_num_layers(self.system_dict); self.system_dict = get_num_trainable_layers(self.system_dict); self.system_dict["model"]["status"] = True; if(self.system_dict["model"]["type"] == "custom"): self.custom_print(" Model name: {}".format("Custom Model")); else: self.custom_print(" Model name: {}".format(self.system_dict["model"]["params"]["model_name"])); self.custom_print(" Num layers in model: {}".format(self.system_dict["model"]["params"]["num_layers"])); self.custom_print(" Num trainable layers: {}".format(self.system_dict["model"]["params"]["num_params_to_update"])); self.custom_print("");