Module monk.tf_keras_1.finetune.level_14_master_main
Expand source code
from tf_keras_1.finetune.imports import *
from system.imports import *
from tf_keras_1.finetune.level_13_updates_main import prototype_updates
class prototype_master(prototype_updates):
'''
Main class for all functions in expert mode
Args:
verbose (int): Set verbosity levels
0 - Print Nothing
1 - Print desired details
'''
def __init__(self, verbose=1):
super().__init__(verbose=verbose);
###############################################################################################################################################
def Dataset(self):
'''
Load transforms and set dataloader
Args:
None
Returns:
None
'''
self.set_dataset_final(test=self.system_dict["states"]["eval_infer"]);
save(self.system_dict);
if(self.system_dict["states"]["eval_infer"]):
self.custom_print("Pre-Composed Test Transforms");
self.custom_print(self.system_dict["dataset"]["transforms"]["test"]);
self.custom_print("");
self.custom_print("Dataset Numbers");
self.custom_print(" Num test images: {}".format(self.system_dict["dataset"]["params"]["num_test_images"]));
self.custom_print(" Num classes: {}".format(self.system_dict["dataset"]["params"]["num_classes"]))
self.custom_print("");
else:
self.custom_print("Pre-Composed Train Transforms");
self.custom_print(self.system_dict["dataset"]["transforms"]["train"]);
self.custom_print("");
self.custom_print("Pre-Composed Val Transforms");
self.custom_print(self.system_dict["dataset"]["transforms"]["val"]);
self.custom_print("");
self.custom_print("Dataset Numbers");
self.custom_print(" Num train images: {}".format(self.system_dict["dataset"]["params"]["num_train_images"]));
self.custom_print(" Num val images: {}".format(self.system_dict["dataset"]["params"]["num_val_images"]));
self.custom_print(" Num classes: {}".format(self.system_dict["dataset"]["params"]["num_classes"]))
self.custom_print("");
###############################################################################################################################################
###############################################################################################################################################
def Dataset_Percent(self, percent):
'''
Select a portion of dataset
Args:
percent (bool): percentage of sub-dataset
Returns:
None
'''
sampled_dataset = None;
image_datasets = {};
dataset_type = self.system_dict["dataset"]["dataset_type"];
dataset_train_path = self.system_dict["dataset"]["train_path"];
dataset_val_path = self.system_dict["dataset"]["val_path"];
csv_train = self.system_dict["dataset"]["csv_train"];
csv_val = self.system_dict["dataset"]["csv_val"];
train_val_split = self.system_dict["dataset"]["params"]["train_val_split"];
delimiter = self.system_dict["dataset"]["params"]["delimiter"];
batch_size = self.system_dict["dataset"]["params"]["batch_size"];
shuffle = self.system_dict["dataset"]["params"]["train_shuffle"];
num_workers = self.system_dict["dataset"]["params"]["num_workers"];
if(dataset_type == "train"):
label_list = [];
image_list = [];
classes = os.listdir(dataset_train_path);
for i in range(len(classes)):
tmp_image_list = os.listdir(dataset_train_path + "/" + classes[i]);
subset_image_list = tmp_image_list[:int(len(tmp_image_list)*percent/100.0)];
result = list(map(lambda x: classes[i] + "/" + x, subset_image_list))
tmp_label_list = [classes[i]]*len(subset_image_list);
label_list += tmp_label_list;
image_list += result;
image_label_dict = {'ID': image_list, 'Label': label_list}
df = pd.DataFrame(image_label_dict);
df.to_csv("sampled_dataset_train.csv", index=False);
elif(dataset_type == "train-val"):
label_list = [];
image_list = [];
classes = os.listdir(dataset_train_path);
for i in range(len(classes)):
tmp_image_list = os.listdir(dataset_train_path + "/" + classes[i]);
subset_image_list = tmp_image_list[:int(len(tmp_image_list)*percent/100.0)];
result = list(map(lambda x: classes[i] + "/" + x, subset_image_list))
tmp_label_list = [classes[i]]*len(subset_image_list);
label_list += tmp_label_list;
image_list += result;
image_label_dict = {'ID': image_list, 'Label': label_list}
df = pd.DataFrame(image_label_dict);
df.to_csv("sampled_dataset_train.csv", index=False);
label_list = [];
image_list = [];
classes = os.listdir(dataset_train_path);
for i in range(len(classes)):
tmp_image_list = os.listdir(dataset_val_path + "/" + classes[i]);
subset_image_list = tmp_image_list[:int(len(tmp_image_list)*percent/100.0)];
result = list(map(lambda x: classes[i] + "/" + x, subset_image_list))
tmp_label_list = [classes[i]]*len(subset_image_list);
label_list += tmp_label_list;
image_list += result;
image_label_dict = {'ID': image_list, 'Label': label_list}
df = pd.DataFrame(image_label_dict);
df.to_csv("sampled_dataset_val.csv", index=False);
elif(dataset_type == "csv_train"):
df = pd.read_csv(csv_train);
df = df.iloc[np.random.permutation(len(df))]
df_sampled = df.iloc[:int(len(df)*percent/100.0)];
df_sampled.to_csv("sampled_dataset_train.csv", index=False);
elif(dataset_type == "csv_train-val"):
df = pd.read_csv(csv_train);
df = df.iloc[np.random.permutation(len(df))]
df_sampled = df.iloc[:int(len(df)*percent/100.0)];
df_sampled.to_csv("sampled_dataset_train.csv", index=False);
df = pd.read_csv(csv_val);
df = df.iloc[np.random.permutation(len(df))]
df_sampled = df.iloc[:int(len(df)*percent/100.0)];
df_sampled.to_csv("sampled_dataset_val.csv", index=False);
###############################################################################################################################################
###############################################################################################################################################
def Model(self):
'''
Load Model as per paraameters set
Args:
None
Returns:
None
'''
if(self.system_dict["states"]["copy_from"]):
msg = "Cannot set model in Copy-From mode.\n";
raise ConstraintError(msg)
self.set_model_final();
save(self.system_dict)
###############################################################################################################################################
###############################################################################################################################################
def Train(self):
'''
Master function for training
Args:
None
Returns:
None
'''
self.set_training_final();
save(self.system_dict);
###############################################################################################################################################
###############################################################################################################################################
def Evaluate(self):
'''
Master function for external validation
Args:
None
Returns:
None
'''
accuracy, class_based_accuracy = self.set_evaluation_final();
save(self.system_dict);
return accuracy, class_based_accuracy;
###############################################################################################################################################
###############################################################################################################################################
def Infer(self, img_name=False, img_dir=False, return_raw=False):
'''
Master function for inference
Args:
img_name (str): path to image
img_dir (str): path to folders containing images.
(Optional)
return_raw (bool): If True, then output dictionary contains image probability for every class in the set.
Else, only the most probable class score is returned back.
Returns:
None
'''
if(not img_dir):
predictions = self.set_prediction_final(img_name=img_name, return_raw=return_raw);
else:
predictions = self.set_prediction_final(img_dir=img_dir, return_raw=return_raw);
return predictions;
###############################################################################################################################################
###############################################################################################################################################
def Compile_Network(self, network, data_shape=(3, 224, 224), use_gpu=True, network_initializer="xavier_normal"):
'''
Master function for compiling custom network and initializing it
Args:
network: Network stacked as list of lists
data_shape (tuple): Input shape of data in format C, H, W
use_gpu (bool): If True, model loaded on gpu
network_initializer (str): Initialize network with random weights. Select the random generator type function.
Returns:
None
'''
self.system_dict["custom_model"]["network_stack"] = network;
self.system_dict["custom_model"]["network_initializer"] = network_initializer;
self.system_dict["model"]["type"] = "custom";
self.system_dict["dataset"]["params"]["data_shape"] = data_shape;
self.system_dict = set_device(use_gpu, self.system_dict);
save(self.system_dict);
self.set_model_final();
###############################################################################################################################################
###############################################################################################################################################
def Visualize_With_Netron(self, data_shape=None, port=None):
'''
Visualize network with netron library
Args:
data_shape (tuple): Input shape of data in format C, H, W
port (int): Local host free port.
Returns:
None
'''
self.custom_print("Using Netron To Visualize");
self.custom_print("Not compatible on kaggle");
self.custom_print("Compatible only for Jupyter Notebooks");
if not data_shape:
self.custom_print("Provide data_shape argument");
pass;
else:
c, h, w = data_shape;
batch_size=1;
x = tf.placeholder(tf.float32, shape=(batch_size, h, w, c))
y = self.system_dict["local"]["model"](x)
self.system_dict["local"]["model"].save("final.h5");
import netron
if(not port):
netron.start('final.h5')
else:
netron.start('final.h5', port=port)
###############################################################################################################################################
Classes
class prototype_master (verbose=1)
-
Main class for all functions in expert mode
Args
verbose
:int
- Set verbosity levels 0 - Print Nothing 1 - Print desired details
Expand source code
class prototype_master(prototype_updates): ''' Main class for all functions in expert mode Args: verbose (int): Set verbosity levels 0 - Print Nothing 1 - Print desired details ''' def __init__(self, verbose=1): super().__init__(verbose=verbose); ############################################################################################################################################### def Dataset(self): ''' Load transforms and set dataloader Args: None Returns: None ''' self.set_dataset_final(test=self.system_dict["states"]["eval_infer"]); save(self.system_dict); if(self.system_dict["states"]["eval_infer"]): self.custom_print("Pre-Composed Test Transforms"); self.custom_print(self.system_dict["dataset"]["transforms"]["test"]); self.custom_print(""); self.custom_print("Dataset Numbers"); self.custom_print(" Num test images: {}".format(self.system_dict["dataset"]["params"]["num_test_images"])); self.custom_print(" Num classes: {}".format(self.system_dict["dataset"]["params"]["num_classes"])) self.custom_print(""); else: self.custom_print("Pre-Composed Train Transforms"); self.custom_print(self.system_dict["dataset"]["transforms"]["train"]); self.custom_print(""); self.custom_print("Pre-Composed Val Transforms"); self.custom_print(self.system_dict["dataset"]["transforms"]["val"]); self.custom_print(""); self.custom_print("Dataset Numbers"); self.custom_print(" Num train images: {}".format(self.system_dict["dataset"]["params"]["num_train_images"])); self.custom_print(" Num val images: {}".format(self.system_dict["dataset"]["params"]["num_val_images"])); self.custom_print(" Num classes: {}".format(self.system_dict["dataset"]["params"]["num_classes"])) self.custom_print(""); ############################################################################################################################################### ############################################################################################################################################### def Dataset_Percent(self, percent): ''' Select a portion of dataset Args: percent (bool): percentage of sub-dataset Returns: None ''' sampled_dataset = None; image_datasets = {}; dataset_type = self.system_dict["dataset"]["dataset_type"]; dataset_train_path = self.system_dict["dataset"]["train_path"]; dataset_val_path = self.system_dict["dataset"]["val_path"]; csv_train = self.system_dict["dataset"]["csv_train"]; csv_val = self.system_dict["dataset"]["csv_val"]; train_val_split = self.system_dict["dataset"]["params"]["train_val_split"]; delimiter = self.system_dict["dataset"]["params"]["delimiter"]; batch_size = self.system_dict["dataset"]["params"]["batch_size"]; shuffle = self.system_dict["dataset"]["params"]["train_shuffle"]; num_workers = self.system_dict["dataset"]["params"]["num_workers"]; if(dataset_type == "train"): label_list = []; image_list = []; classes = os.listdir(dataset_train_path); for i in range(len(classes)): tmp_image_list = os.listdir(dataset_train_path + "/" + classes[i]); subset_image_list = tmp_image_list[:int(len(tmp_image_list)*percent/100.0)]; result = list(map(lambda x: classes[i] + "/" + x, subset_image_list)) tmp_label_list = [classes[i]]*len(subset_image_list); label_list += tmp_label_list; image_list += result; image_label_dict = {'ID': image_list, 'Label': label_list} df = pd.DataFrame(image_label_dict); df.to_csv("sampled_dataset_train.csv", index=False); elif(dataset_type == "train-val"): label_list = []; image_list = []; classes = os.listdir(dataset_train_path); for i in range(len(classes)): tmp_image_list = os.listdir(dataset_train_path + "/" + classes[i]); subset_image_list = tmp_image_list[:int(len(tmp_image_list)*percent/100.0)]; result = list(map(lambda x: classes[i] + "/" + x, subset_image_list)) tmp_label_list = [classes[i]]*len(subset_image_list); label_list += tmp_label_list; image_list += result; image_label_dict = {'ID': image_list, 'Label': label_list} df = pd.DataFrame(image_label_dict); df.to_csv("sampled_dataset_train.csv", index=False); label_list = []; image_list = []; classes = os.listdir(dataset_train_path); for i in range(len(classes)): tmp_image_list = os.listdir(dataset_val_path + "/" + classes[i]); subset_image_list = tmp_image_list[:int(len(tmp_image_list)*percent/100.0)]; result = list(map(lambda x: classes[i] + "/" + x, subset_image_list)) tmp_label_list = [classes[i]]*len(subset_image_list); label_list += tmp_label_list; image_list += result; image_label_dict = {'ID': image_list, 'Label': label_list} df = pd.DataFrame(image_label_dict); df.to_csv("sampled_dataset_val.csv", index=False); elif(dataset_type == "csv_train"): df = pd.read_csv(csv_train); df = df.iloc[np.random.permutation(len(df))] df_sampled = df.iloc[:int(len(df)*percent/100.0)]; df_sampled.to_csv("sampled_dataset_train.csv", index=False); elif(dataset_type == "csv_train-val"): df = pd.read_csv(csv_train); df = df.iloc[np.random.permutation(len(df))] df_sampled = df.iloc[:int(len(df)*percent/100.0)]; df_sampled.to_csv("sampled_dataset_train.csv", index=False); df = pd.read_csv(csv_val); df = df.iloc[np.random.permutation(len(df))] df_sampled = df.iloc[:int(len(df)*percent/100.0)]; df_sampled.to_csv("sampled_dataset_val.csv", index=False); ############################################################################################################################################### ############################################################################################################################################### def Model(self): ''' Load Model as per paraameters set Args: None Returns: None ''' if(self.system_dict["states"]["copy_from"]): msg = "Cannot set model in Copy-From mode.\n"; raise ConstraintError(msg) self.set_model_final(); save(self.system_dict) ############################################################################################################################################### ############################################################################################################################################### def Train(self): ''' Master function for training Args: None Returns: None ''' self.set_training_final(); save(self.system_dict); ############################################################################################################################################### ############################################################################################################################################### def Evaluate(self): ''' Master function for external validation Args: None Returns: None ''' accuracy, class_based_accuracy = self.set_evaluation_final(); save(self.system_dict); return accuracy, class_based_accuracy; ############################################################################################################################################### ############################################################################################################################################### def Infer(self, img_name=False, img_dir=False, return_raw=False): ''' Master function for inference Args: img_name (str): path to image img_dir (str): path to folders containing images. (Optional) return_raw (bool): If True, then output dictionary contains image probability for every class in the set. Else, only the most probable class score is returned back. Returns: None ''' if(not img_dir): predictions = self.set_prediction_final(img_name=img_name, return_raw=return_raw); else: predictions = self.set_prediction_final(img_dir=img_dir, return_raw=return_raw); return predictions; ############################################################################################################################################### ############################################################################################################################################### def Compile_Network(self, network, data_shape=(3, 224, 224), use_gpu=True, network_initializer="xavier_normal"): ''' Master function for compiling custom network and initializing it Args: network: Network stacked as list of lists data_shape (tuple): Input shape of data in format C, H, W use_gpu (bool): If True, model loaded on gpu network_initializer (str): Initialize network with random weights. Select the random generator type function. Returns: None ''' self.system_dict["custom_model"]["network_stack"] = network; self.system_dict["custom_model"]["network_initializer"] = network_initializer; self.system_dict["model"]["type"] = "custom"; self.system_dict["dataset"]["params"]["data_shape"] = data_shape; self.system_dict = set_device(use_gpu, self.system_dict); save(self.system_dict); self.set_model_final(); ############################################################################################################################################### ############################################################################################################################################### def Visualize_With_Netron(self, data_shape=None, port=None): ''' Visualize network with netron library Args: data_shape (tuple): Input shape of data in format C, H, W port (int): Local host free port. Returns: None ''' self.custom_print("Using Netron To Visualize"); self.custom_print("Not compatible on kaggle"); self.custom_print("Compatible only for Jupyter Notebooks"); if not data_shape: self.custom_print("Provide data_shape argument"); pass; else: c, h, w = data_shape; batch_size=1; x = tf.placeholder(tf.float32, shape=(batch_size, h, w, c)) y = self.system_dict["local"]["model"](x) self.system_dict["local"]["model"].save("final.h5"); import netron if(not port): netron.start('final.h5') else: netron.start('final.h5', port=port)
Ancestors
- tf_keras_1.finetune.level_13_updates_main.prototype_updates
- tf_keras_1.finetune.level_12_losses_main.prototype_losses
- tf_keras_1.finetune.level_11_optimizers_main.prototype_optimizers
- tf_keras_1.finetune.level_10_schedulers_main.prototype_schedulers
- tf_keras_1.finetune.level_9_transforms_main.prototype_transforms
- tf_keras_1.finetune.level_8_layers_main.prototype_layers
- tf_keras_1.finetune.level_7_aux_main.prototype_aux
- tf_keras_1.finetune.level_6_params_main.prototype_params
- tf_keras_1.finetune.level_5_state_base.finetune_state
- tf_keras_1.finetune.level_4_evaluation_base.finetune_evaluation
- tf_keras_1.finetune.level_3_training_base.finetune_training
- tf_keras_1.finetune.level_2_model_base.finetune_model
- tf_keras_1.finetune.level_1_dataset_base.finetune_dataset
- system.base_class.system
Methods
def Compile_Network(self, network, data_shape=(3, 224, 224), use_gpu=True, network_initializer='xavier_normal')
-
Master function for compiling custom network and initializing it
Args
network
- Network stacked as list of lists
data_shape
:tuple
- Input shape of data in format C, H, W
use_gpu
:bool
- If True, model loaded on gpu
network_initializer
:str
- Initialize network with random weights. Select the random generator type function.
Returns
None
Expand source code
def Compile_Network(self, network, data_shape=(3, 224, 224), use_gpu=True, network_initializer="xavier_normal"): ''' Master function for compiling custom network and initializing it Args: network: Network stacked as list of lists data_shape (tuple): Input shape of data in format C, H, W use_gpu (bool): If True, model loaded on gpu network_initializer (str): Initialize network with random weights. Select the random generator type function. Returns: None ''' self.system_dict["custom_model"]["network_stack"] = network; self.system_dict["custom_model"]["network_initializer"] = network_initializer; self.system_dict["model"]["type"] = "custom"; self.system_dict["dataset"]["params"]["data_shape"] = data_shape; self.system_dict = set_device(use_gpu, self.system_dict); save(self.system_dict); self.set_model_final();
def Dataset(self)
-
Load transforms and set dataloader
Args
None
Returns
None
Expand source code
def Dataset(self): ''' Load transforms and set dataloader Args: None Returns: None ''' self.set_dataset_final(test=self.system_dict["states"]["eval_infer"]); save(self.system_dict); if(self.system_dict["states"]["eval_infer"]): self.custom_print("Pre-Composed Test Transforms"); self.custom_print(self.system_dict["dataset"]["transforms"]["test"]); self.custom_print(""); self.custom_print("Dataset Numbers"); self.custom_print(" Num test images: {}".format(self.system_dict["dataset"]["params"]["num_test_images"])); self.custom_print(" Num classes: {}".format(self.system_dict["dataset"]["params"]["num_classes"])) self.custom_print(""); else: self.custom_print("Pre-Composed Train Transforms"); self.custom_print(self.system_dict["dataset"]["transforms"]["train"]); self.custom_print(""); self.custom_print("Pre-Composed Val Transforms"); self.custom_print(self.system_dict["dataset"]["transforms"]["val"]); self.custom_print(""); self.custom_print("Dataset Numbers"); self.custom_print(" Num train images: {}".format(self.system_dict["dataset"]["params"]["num_train_images"])); self.custom_print(" Num val images: {}".format(self.system_dict["dataset"]["params"]["num_val_images"])); self.custom_print(" Num classes: {}".format(self.system_dict["dataset"]["params"]["num_classes"])) self.custom_print("");
def Dataset_Percent(self, percent)
-
Select a portion of dataset
Args
percent
:bool
- percentage of sub-dataset
Returns
None
Expand source code
def Dataset_Percent(self, percent): ''' Select a portion of dataset Args: percent (bool): percentage of sub-dataset Returns: None ''' sampled_dataset = None; image_datasets = {}; dataset_type = self.system_dict["dataset"]["dataset_type"]; dataset_train_path = self.system_dict["dataset"]["train_path"]; dataset_val_path = self.system_dict["dataset"]["val_path"]; csv_train = self.system_dict["dataset"]["csv_train"]; csv_val = self.system_dict["dataset"]["csv_val"]; train_val_split = self.system_dict["dataset"]["params"]["train_val_split"]; delimiter = self.system_dict["dataset"]["params"]["delimiter"]; batch_size = self.system_dict["dataset"]["params"]["batch_size"]; shuffle = self.system_dict["dataset"]["params"]["train_shuffle"]; num_workers = self.system_dict["dataset"]["params"]["num_workers"]; if(dataset_type == "train"): label_list = []; image_list = []; classes = os.listdir(dataset_train_path); for i in range(len(classes)): tmp_image_list = os.listdir(dataset_train_path + "/" + classes[i]); subset_image_list = tmp_image_list[:int(len(tmp_image_list)*percent/100.0)]; result = list(map(lambda x: classes[i] + "/" + x, subset_image_list)) tmp_label_list = [classes[i]]*len(subset_image_list); label_list += tmp_label_list; image_list += result; image_label_dict = {'ID': image_list, 'Label': label_list} df = pd.DataFrame(image_label_dict); df.to_csv("sampled_dataset_train.csv", index=False); elif(dataset_type == "train-val"): label_list = []; image_list = []; classes = os.listdir(dataset_train_path); for i in range(len(classes)): tmp_image_list = os.listdir(dataset_train_path + "/" + classes[i]); subset_image_list = tmp_image_list[:int(len(tmp_image_list)*percent/100.0)]; result = list(map(lambda x: classes[i] + "/" + x, subset_image_list)) tmp_label_list = [classes[i]]*len(subset_image_list); label_list += tmp_label_list; image_list += result; image_label_dict = {'ID': image_list, 'Label': label_list} df = pd.DataFrame(image_label_dict); df.to_csv("sampled_dataset_train.csv", index=False); label_list = []; image_list = []; classes = os.listdir(dataset_train_path); for i in range(len(classes)): tmp_image_list = os.listdir(dataset_val_path + "/" + classes[i]); subset_image_list = tmp_image_list[:int(len(tmp_image_list)*percent/100.0)]; result = list(map(lambda x: classes[i] + "/" + x, subset_image_list)) tmp_label_list = [classes[i]]*len(subset_image_list); label_list += tmp_label_list; image_list += result; image_label_dict = {'ID': image_list, 'Label': label_list} df = pd.DataFrame(image_label_dict); df.to_csv("sampled_dataset_val.csv", index=False); elif(dataset_type == "csv_train"): df = pd.read_csv(csv_train); df = df.iloc[np.random.permutation(len(df))] df_sampled = df.iloc[:int(len(df)*percent/100.0)]; df_sampled.to_csv("sampled_dataset_train.csv", index=False); elif(dataset_type == "csv_train-val"): df = pd.read_csv(csv_train); df = df.iloc[np.random.permutation(len(df))] df_sampled = df.iloc[:int(len(df)*percent/100.0)]; df_sampled.to_csv("sampled_dataset_train.csv", index=False); df = pd.read_csv(csv_val); df = df.iloc[np.random.permutation(len(df))] df_sampled = df.iloc[:int(len(df)*percent/100.0)]; df_sampled.to_csv("sampled_dataset_val.csv", index=False);
def Evaluate(self)
-
Master function for external validation
Args
None
Returns
None
Expand source code
def Evaluate(self): ''' Master function for external validation Args: None Returns: None ''' accuracy, class_based_accuracy = self.set_evaluation_final(); save(self.system_dict); return accuracy, class_based_accuracy;
def Infer(self, img_name=False, img_dir=False, return_raw=False)
-
Master function for inference
Args
img_name
:str
- path to image
img_dir
:str
- path to folders containing images. (Optional)
return_raw
:bool
- If True, then output dictionary contains image probability for every class in the set. Else, only the most probable class score is returned back.
Returns
None
Expand source code
def Infer(self, img_name=False, img_dir=False, return_raw=False): ''' Master function for inference Args: img_name (str): path to image img_dir (str): path to folders containing images. (Optional) return_raw (bool): If True, then output dictionary contains image probability for every class in the set. Else, only the most probable class score is returned back. Returns: None ''' if(not img_dir): predictions = self.set_prediction_final(img_name=img_name, return_raw=return_raw); else: predictions = self.set_prediction_final(img_dir=img_dir, return_raw=return_raw); return predictions;
def Model(self)
-
Load Model as per paraameters set
Args
None
Returns
None
Expand source code
def Model(self): ''' Load Model as per paraameters set Args: None Returns: None ''' if(self.system_dict["states"]["copy_from"]): msg = "Cannot set model in Copy-From mode.\n"; raise ConstraintError(msg) self.set_model_final(); save(self.system_dict)
def Train(self)
-
Master function for training
Args
None
Returns
None
Expand source code
def Train(self): ''' Master function for training Args: None Returns: None ''' self.set_training_final(); save(self.system_dict);
def Visualize_With_Netron(self, data_shape=None, port=None)
-
Visualize network with netron library
Args
data_shape
:tuple
- Input shape of data in format C, H, W
port
:int
- Local host free port.
Returns
None
Expand source code
def Visualize_With_Netron(self, data_shape=None, port=None): ''' Visualize network with netron library Args: data_shape (tuple): Input shape of data in format C, H, W port (int): Local host free port. Returns: None ''' self.custom_print("Using Netron To Visualize"); self.custom_print("Not compatible on kaggle"); self.custom_print("Compatible only for Jupyter Notebooks"); if not data_shape: self.custom_print("Provide data_shape argument"); pass; else: c, h, w = data_shape; batch_size=1; x = tf.placeholder(tf.float32, shape=(batch_size, h, w, c)) y = self.system_dict["local"]["model"](x) self.system_dict["local"]["model"].save("final.h5"); import netron if(not port): netron.start('final.h5') else: netron.start('final.h5', port=port)