Module monk.tf_keras_1.finetune.level_10_schedulers_main
Expand source code
from tf_keras_1.finetune.imports import *
from system.imports import *
from tf_keras_1.finetune.level_9_transforms_main import prototype_transforms
class prototype_schedulers(prototype_transforms):
def __init__(self, verbose=1):
super().__init__(verbose=verbose);
###############################################################################################################################################
def lr_fixed(self):
'''
Set learning rate fixed
Args:
None
Returns:
None
'''
self.system_dict = scheduler_fixed(self.system_dict);
self.custom_print("Learning rate scheduler");
self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["learning_rate_scheduler"]["name"]));
self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]));
self.custom_print("");
###############################################################################################################################################
###############################################################################################################################################
def lr_step_decrease(self, step_size, gamma=0.1, last_epoch=-1):
'''
Set learning rate to decrease in regular steps
Args:
step_size (int): Step interval for decreasing learning rate
gamma (str): Reduction multiplier for reducing learning rate post every step
last_epoch (int): Set this epoch to a level post which learning rate will not be decreased
Returns:
None
'''
self.system_dict = scheduler_step(self.system_dict, step_size, gamma=gamma, last_epoch=last_epoch);
self.custom_print("Learning rate scheduler");
self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["learning_rate_scheduler"]["name"]));
self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]));
self.custom_print("");
###############################################################################################################################################
###############################################################################################################################################
def lr_exponential_decrease(self, gamma, last_epoch=-1):
'''
Set learning rate to decrease exponentially every step
Args:
gamma (str): Reduction multiplier for reducing learning rate post every step
last_epoch (int): Set this epoch to a level post which learning rate will not be decreased
Returns:
None
'''
self.system_dict = scheduler_exponential(self.system_dict, gamma, last_epoch=last_epoch);
self.custom_print("Learning rate scheduler");
self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["learning_rate_scheduler"]["name"]));
self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]));
self.custom_print("");
###############################################################################################################################################
###############################################################################################################################################
def lr_plateau_decrease(self, mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001, \
threshold_mode='rel', cooldown=0, min_lr=0, epsilon=1e-08):
'''
Set learning rate to decrease if a metric (loss) stagnates in a plateau
Args:
mode (str): Either of
- 'min' : lr will be reduced when the quantity monitored (loss) has stopped decreasing;
- 'max' : lr reduced when the quantity monitored (accuracy) has stopped increasing.
factor (float): Reduction multiplier for reducing learning rate post every step
patience (int): Number of epochs to wait before reducing learning rate
verbose (bool): If True, all computations and wait times are printed
threshold (float): Preset fixed to 0.0001
threshold_mode (str): Preset fixed to 'rel' mode
cooldown (int): Number of epochs to wait before actually applying the scheduler post the actual designated step
min_lr (float): Set minimum learning rate, post which it will not be decreased
epsilon (float): A small value to avoid divison by zero.
last_epoch (int): Set this epoch to a level post which learning rate will not be decreased
Returns:
None
'''
self.system_dict = scheduler_plateau(self.system_dict, mode=mode, factor=factor, patience=patience, verbose=verbose,
threshold=threshold, threshold_mode=threshold_mode, cooldown=cooldown, min_lr=min_lr, epsilon=epsilon);
self.custom_print("Learning rate scheduler");
self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["learning_rate_scheduler"]["name"]));
self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"]));
self.custom_print("");
###############################################################################################################################################
Classes
class prototype_schedulers (verbose=1)
-
Main class for all transforms in expert mode
Args
verbose
:int
- Set verbosity levels 0 - Print Nothing 1 - Print desired details
Expand source code
class prototype_schedulers(prototype_transforms): def __init__(self, verbose=1): super().__init__(verbose=verbose); ############################################################################################################################################### def lr_fixed(self): ''' Set learning rate fixed Args: None Returns: None ''' self.system_dict = scheduler_fixed(self.system_dict); self.custom_print("Learning rate scheduler"); self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["learning_rate_scheduler"]["name"])); self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"])); self.custom_print(""); ############################################################################################################################################### ############################################################################################################################################### def lr_step_decrease(self, step_size, gamma=0.1, last_epoch=-1): ''' Set learning rate to decrease in regular steps Args: step_size (int): Step interval for decreasing learning rate gamma (str): Reduction multiplier for reducing learning rate post every step last_epoch (int): Set this epoch to a level post which learning rate will not be decreased Returns: None ''' self.system_dict = scheduler_step(self.system_dict, step_size, gamma=gamma, last_epoch=last_epoch); self.custom_print("Learning rate scheduler"); self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["learning_rate_scheduler"]["name"])); self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"])); self.custom_print(""); ############################################################################################################################################### ############################################################################################################################################### def lr_exponential_decrease(self, gamma, last_epoch=-1): ''' Set learning rate to decrease exponentially every step Args: gamma (str): Reduction multiplier for reducing learning rate post every step last_epoch (int): Set this epoch to a level post which learning rate will not be decreased Returns: None ''' self.system_dict = scheduler_exponential(self.system_dict, gamma, last_epoch=last_epoch); self.custom_print("Learning rate scheduler"); self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["learning_rate_scheduler"]["name"])); self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"])); self.custom_print(""); ############################################################################################################################################### ############################################################################################################################################### def lr_plateau_decrease(self, mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001, \ threshold_mode='rel', cooldown=0, min_lr=0, epsilon=1e-08): ''' Set learning rate to decrease if a metric (loss) stagnates in a plateau Args: mode (str): Either of - 'min' : lr will be reduced when the quantity monitored (loss) has stopped decreasing; - 'max' : lr reduced when the quantity monitored (accuracy) has stopped increasing. factor (float): Reduction multiplier for reducing learning rate post every step patience (int): Number of epochs to wait before reducing learning rate verbose (bool): If True, all computations and wait times are printed threshold (float): Preset fixed to 0.0001 threshold_mode (str): Preset fixed to 'rel' mode cooldown (int): Number of epochs to wait before actually applying the scheduler post the actual designated step min_lr (float): Set minimum learning rate, post which it will not be decreased epsilon (float): A small value to avoid divison by zero. last_epoch (int): Set this epoch to a level post which learning rate will not be decreased Returns: None ''' self.system_dict = scheduler_plateau(self.system_dict, mode=mode, factor=factor, patience=patience, verbose=verbose, threshold=threshold, threshold_mode=threshold_mode, cooldown=cooldown, min_lr=min_lr, epsilon=epsilon); self.custom_print("Learning rate scheduler"); self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["learning_rate_scheduler"]["name"])); self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"])); self.custom_print("");
Ancestors
- tf_keras_1.finetune.level_9_transforms_main.prototype_transforms
- tf_keras_1.finetune.level_8_layers_main.prototype_layers
- tf_keras_1.finetune.level_7_aux_main.prototype_aux
- tf_keras_1.finetune.level_6_params_main.prototype_params
- tf_keras_1.finetune.level_5_state_base.finetune_state
- tf_keras_1.finetune.level_4_evaluation_base.finetune_evaluation
- tf_keras_1.finetune.level_3_training_base.finetune_training
- tf_keras_1.finetune.level_2_model_base.finetune_model
- tf_keras_1.finetune.level_1_dataset_base.finetune_dataset
- system.base_class.system
Methods
def lr_exponential_decrease(self, gamma, last_epoch=-1)
-
Set learning rate to decrease exponentially every step
Args
gamma
:str
- Reduction multiplier for reducing learning rate post every step
last_epoch
:int
- Set this epoch to a level post which learning rate will not be decreased
Returns
None
Expand source code
def lr_exponential_decrease(self, gamma, last_epoch=-1): ''' Set learning rate to decrease exponentially every step Args: gamma (str): Reduction multiplier for reducing learning rate post every step last_epoch (int): Set this epoch to a level post which learning rate will not be decreased Returns: None ''' self.system_dict = scheduler_exponential(self.system_dict, gamma, last_epoch=last_epoch); self.custom_print("Learning rate scheduler"); self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["learning_rate_scheduler"]["name"])); self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"])); self.custom_print("");
def lr_fixed(self)
-
Set learning rate fixed
Args
None
Returns
None
Expand source code
def lr_fixed(self): ''' Set learning rate fixed Args: None Returns: None ''' self.system_dict = scheduler_fixed(self.system_dict); self.custom_print("Learning rate scheduler"); self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["learning_rate_scheduler"]["name"])); self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"])); self.custom_print("");
def lr_plateau_decrease(self, mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, epsilon=1e-08)
-
Set learning rate to decrease if a metric (loss) stagnates in a plateau
Args
mode
:str
- Either of - 'min' : lr will be reduced when the quantity monitored (loss) has stopped decreasing; - 'max' : lr reduced when the quantity monitored (accuracy) has stopped increasing.
factor
:float
- Reduction multiplier for reducing learning rate post every step
patience
:int
- Number of epochs to wait before reducing learning rate
verbose
:bool
- If True, all computations and wait times are printed
threshold
:float
- Preset fixed to 0.0001
threshold_mode
:str
- Preset fixed to 'rel' mode
cooldown
:int
- Number of epochs to wait before actually applying the scheduler post the actual designated step
min_lr
:float
- Set minimum learning rate, post which it will not be decreased
epsilon
:float
- A small value to avoid divison by zero.
last_epoch
:int
- Set this epoch to a level post which learning rate will not be decreased
Returns
None
Expand source code
def lr_plateau_decrease(self, mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001, \ threshold_mode='rel', cooldown=0, min_lr=0, epsilon=1e-08): ''' Set learning rate to decrease if a metric (loss) stagnates in a plateau Args: mode (str): Either of - 'min' : lr will be reduced when the quantity monitored (loss) has stopped decreasing; - 'max' : lr reduced when the quantity monitored (accuracy) has stopped increasing. factor (float): Reduction multiplier for reducing learning rate post every step patience (int): Number of epochs to wait before reducing learning rate verbose (bool): If True, all computations and wait times are printed threshold (float): Preset fixed to 0.0001 threshold_mode (str): Preset fixed to 'rel' mode cooldown (int): Number of epochs to wait before actually applying the scheduler post the actual designated step min_lr (float): Set minimum learning rate, post which it will not be decreased epsilon (float): A small value to avoid divison by zero. last_epoch (int): Set this epoch to a level post which learning rate will not be decreased Returns: None ''' self.system_dict = scheduler_plateau(self.system_dict, mode=mode, factor=factor, patience=patience, verbose=verbose, threshold=threshold, threshold_mode=threshold_mode, cooldown=cooldown, min_lr=min_lr, epsilon=epsilon); self.custom_print("Learning rate scheduler"); self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["learning_rate_scheduler"]["name"])); self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"])); self.custom_print("");
def lr_step_decrease(self, step_size, gamma=0.1, last_epoch=-1)
-
Set learning rate to decrease in regular steps
Args
step_size
:int
- Step interval for decreasing learning rate
gamma
:str
- Reduction multiplier for reducing learning rate post every step
last_epoch
:int
- Set this epoch to a level post which learning rate will not be decreased
Returns
None
Expand source code
def lr_step_decrease(self, step_size, gamma=0.1, last_epoch=-1): ''' Set learning rate to decrease in regular steps Args: step_size (int): Step interval for decreasing learning rate gamma (str): Reduction multiplier for reducing learning rate post every step last_epoch (int): Set this epoch to a level post which learning rate will not be decreased Returns: None ''' self.system_dict = scheduler_step(self.system_dict, step_size, gamma=gamma, last_epoch=last_epoch); self.custom_print("Learning rate scheduler"); self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["learning_rate_scheduler"]["name"])); self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["learning_rate_scheduler"]["params"])); self.custom_print("");