Module monk.pytorch.transforms.transforms
Expand source code
from pytorch.transforms.imports import *
from system.imports import *
def transform_center_crop(system_dict, input_size, train, val, test, retrieve=False):
    '''
    Apply Center Cropping transformation
    Args:
        system_dict (dict): System dictionary storing experiment state and set variables
        input_size (int, list): Crop size
        train (bool): If True, transform applied to training data
        val (bool): If True, transform applied to validation data
        test (bool): If True, transform applied to testing/inferencing data
    Returns:
        dict: updated system dict
    '''
    tmp = {};
    tmp["CenterCrop"] = {};
    tmp["CenterCrop"]["input_size"] = input_size;
    if(train):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["train"].append(tmp);
        system_dict["local"]["transforms_train"].append(transforms.CenterCrop(input_size));
    if(val):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["val"].append(tmp);
        system_dict["local"]["transforms_val"].append(transforms.CenterCrop(input_size));
    if(test):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["test"].append(tmp);
        system_dict["local"]["transforms_test"].append(transforms.CenterCrop(input_size));
    return system_dict;
def transform_color_jitter(system_dict, brightness, contrast, saturation, hue, train, val, test, retrieve=False):
    '''
    Apply Color jittering transformations
    Args:
        system_dict (dict): System dictionary storing experiment state and set variables
        brightness (float): Levels to jitter brightness.
                                    0 - min
                                    1 - max
        contrast (float): Levels to jitter contrast.
                                    0 - min
                                    1 - max
        saturation (float): Levels to jitter saturation.
                                    0 - min
                                    1 - max
        hue (float): Levels to jitter hue.
                                    0 - min
                                    1 - max
        train (bool): If True, transform applied to training data
        val (bool): If True, transform applied to validation data
        test (bool): If True, transform applied to testing/inferencing data
    Returns:
        dict: updated system dict
    '''
    tmp = {};
    tmp["ColorJitter"] = {};
    tmp["ColorJitter"]["brightness"] = brightness;
    tmp["ColorJitter"]["contrast"] = contrast;
    tmp["ColorJitter"]["saturation"] = saturation;
    tmp["ColorJitter"]["hue"] = hue;
    if(train):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["train"].append(tmp);
        system_dict["local"]["transforms_train"].append(transforms.ColorJitter(brightness=brightness, contrast=contrast, saturation=saturation, hue=hue));
    if(val):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["val"].append(tmp);
        system_dict["local"]["transforms_val"].append(transforms.ColorJitter(brightness=brightness, contrast=contrast, saturation=saturation, hue=hue));
    if(test):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["test"].append(tmp);
        system_dict["local"]["transforms_test"].append(transforms.ColorJitter(brightness=brightness, contrast=contrast, saturation=saturation, hue=hue));
    return system_dict;
def transform_random_affine(system_dict, degrees, translate, scale, shear, train, val, test, retrieve=False):
    '''
    Apply random affine transformations
    Args:
        system_dict (dict): System dictionary storing experiment state and set variables
        degrees (float): Max Rotation range limit for transforms
        scale (float, list): Range for randomly scaling 
        shear (float, list): Range for randomly applying sheer changes
        train (bool): If True, transform applied to training data
        val (bool): If True, transform applied to validation data
        test (bool): If True, transform applied to testing/inferencing data
    Returns:
        dict: updated system dict
    '''
    tmp = {};
    tmp["RandomAffine"] = {};
    tmp["RandomAffine"]["degrees"] = degrees;
    tmp["RandomAffine"]["translate"] = translate;
    tmp["RandomAffine"]["scale"] = scale;
    tmp["RandomAffine"]["shear"] = shear;
    if(train):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["train"].append(tmp);
        system_dict["local"]["transforms_train"].append(transforms.RandomAffine(degrees, translate=translate, scale=scale, shear=shear));
    if(val):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["val"].append(tmp);
        system_dict["local"]["transforms_val"].append(transforms.RandomAffine(degrees, translate=translate, scale=scale, shear=shear));
    if(test):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["test"].append(tmp);
        system_dict["local"]["transforms_test"].append(transforms.RandomAffine(degrees, translate=translate, scale=scale, shear=shear));
    return system_dict;
def transform_random_crop(system_dict, input_size, train, val, test, retrieve=True):
    '''
    Apply Random Cropping transformation
    Args:
        system_dict (dict): System dictionary storing experiment state and set variables
        input_size (int, list): Crop size
        train (bool): If True, transform applied to training data
        val (bool): If True, transform applied to validation data
        test (bool): If True, transform applied to testing/inferencing data
    Returns:
        dict: updated system dict
    '''  
    tmp = {};
    tmp["RandomCrop"] = {};
    tmp["RandomCrop"]["input_size"] = input_size;
    if(train):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["train"].append(tmp);
        system_dict["local"]["transforms_train"].append(transforms.RandomCrop(input_size));
    if(val):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["val"].append(tmp);
        system_dict["local"]["transforms_val"].append(transforms.RandomCrop(input_size));
    if(test):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["test"].append(tmp);
        system_dict["local"]["transforms_test"].append(transforms.RandomCrop(input_size));
    return system_dict;
def transform_random_horizontal_flip(system_dict, probability, train, val, test, retrieve=False):
    '''
    Apply random horizontal flip transformations
    Args:
        system_dict (dict): System dictionary storing experiment state and set variables
        probability (float): Probability of flipping the input image
        train (bool): If True, transform applied to training data
        val (bool): If True, transform applied to validation data
        test (bool): If True, transform applied to testing/inferencing data
    Returns:
        dict: updated system dict
    '''
    tmp = {};
    tmp["RandomHorizontalFlip"] = {};
    tmp["RandomHorizontalFlip"]["p"] = probability;
    if(train):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["train"].append(tmp);
        system_dict["local"]["transforms_train"].append(transforms.RandomHorizontalFlip(p=probability));
    if(val):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["val"].append(tmp);
        system_dict["local"]["transforms_val"].append(transforms.RandomHorizontalFlip(p=probability));
    if(test):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["test"].append(tmp);
        system_dict["local"]["transforms_test"].append(transforms.RandomHorizontalFlip(p=probability));
    return system_dict;
def transform_random_perspective(system_dict, distortion_scale, probability, train, val, test, retrieve=False):
    '''
    Apply random perspective transformations
    Args:
        system_dict (dict): System dictionary storing experiment state and set variables
        distortion_scale (float): Max limit for perspective distortion
        probability (float): Probability of applying transformation
        train (bool): If True, transform applied to training data
        val (bool): If True, transform applied to validation data
        test (bool): If True, transform applied to testing/inferencing data
    Returns:
        dict: updated system dict
    '''
    tmp = {};
    tmp["RandomPerspective"] = {};
    tmp["RandomPerspective"]["distortion_scale"] = distortion_scale;
    tmp["RandomPerspective"]["p"] = probability;
    if(train):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["train"].append(tmp);
        system_dict["local"]["transforms_train"].append(transforms.RandomPerspective(distortion_scale=distortion_scale, p=probability));
    if(val):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["val"].append(tmp);
        system_dict["local"]["transforms_val"].append(transforms.RandomPerspective(distortion_scale=distortion_scale, p=probability));
    if(test):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["test"].append(tmp);
        system_dict["local"]["transforms_test"].append(transforms.RandomPerspective(distortion_scale=distortion_scale, p=probability));
    return system_dict;
def transform_random_resized_crop(system_dict, input_size, scale, ratio, train, val, test, retrieve=False):
    '''
    Apply Random Resized Cropping transformation
    Args:
        system_dict (dict): System dictionary storing experiment state and set variables
        input_size (int, list): Crop size
        scale (float, tuple): scaling ratio limits; for maximum and minimum random scaling
        ratio (float, tuple): aspect ratio limits; for maximum and minmum changes to aspect ratios 
        train (bool): If True, transform applied to training data
        val (bool): If True, transform applied to validation data
        test (bool): If True, transform applied to testing/inferencing data
    Returns:
        dict: updated system dict
    '''
    tmp = {};
    tmp["RandomResizedCrop"] = {};
    tmp["RandomResizedCrop"]["input_size"] = input_size;
    tmp["RandomResizedCrop"]["scale"] = scale;
    tmp["RandomResizedCrop"]["ratio"] = ratio;
    if(train):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["train"].append(tmp);
        system_dict["local"]["transforms_train"].append(transforms.RandomResizedCrop(size=input_size, scale=scale, ratio=ratio));
    if(val):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["val"].append(tmp);
        system_dict["local"]["transforms_val"].append(transforms.RandomResizedCrop(size=input_size, scale=scale, ratio=ratio));
    if(test):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["test"].append(tmp);
        system_dict["local"]["transforms_test"].append(transforms.RandomResizedCrop(size=input_size, scale=scale, ratio=ratio));
    return system_dict;
def transform_grayscale(system_dict, num_output_channels, train, val, test, retrieve=False):
    '''
    Not active
    '''
    tmp = {};
    tmp["Grayscale"] = {};
    tmp["Grayscale"]["num_output_channels"] = num_output_channels;
    if(train):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["train"].append(tmp);
        system_dict["local"]["transforms_train"].append(transforms.Grayscale(num_output_channels=num_output_channels));
    if(val):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["val"].append(tmp);
        system_dict["local"]["transforms_val"].append(transforms.Grayscale(num_output_channels=num_output_channels));
    if(test):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["test"].append(tmp);
        system_dict["local"]["transforms_test"].append(transforms.Grayscale(num_output_channels=num_output_channels));
    return system_dict;
def transform_random_rotation(system_dict, degrees, train, val, test, retrieve=False):
    '''
    Apply random rotation transformations
    Args:
        system_dict (dict): System dictionary storing experiment state and set variables
        degrees (float): Max Rotation range limit for transforms
        train (bool): If True, transform applied to training data
        val (bool): If True, transform applied to validation data
        test (bool): If True, transform applied to testing/inferencing data
    Returns:
        dict: updated system dict
    '''
    tmp = {};
    tmp["RandomRotation"] = {};
    tmp["RandomRotation"]["degrees"] = degrees;
    if(train):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["train"].append(tmp);
        system_dict["local"]["transforms_train"].append(transforms.RandomRotation(degrees));
    if(val):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["val"].append(tmp);
        system_dict["local"]["transforms_val"].append(transforms.RandomRotation(degrees));
    if(test):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["test"].append(tmp);
        system_dict["local"]["transforms_test"].append(transforms.RandomRotation(degrees));
    return system_dict;
def transform_random_vertical_flip(system_dict, probability, train, val, test, retrieve=False):
    '''
    Apply random vertical flip transformations
    Args:
        system_dict (dict): System dictionary storing experiment state and set variables
        probability (float): Probability of flipping the input image
        train (bool): If True, transform applied to training data
        val (bool): If True, transform applied to validation data
        test (bool): If True, transform applied to testing/inferencing data
    Returns:
        dict: updated system dict
    '''
    tmp = {};
    tmp["RandomVerticalFlip"] = {};
    tmp["RandomVerticalFlip"]["p"] = probability;
    if(train):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["train"].append(tmp);
        system_dict["local"]["transforms_train"].append(transforms.RandomVerticalFlip(p=probability));
    if(val):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["val"].append(tmp);
        system_dict["local"]["transforms_val"].append(transforms.RandomVerticalFlip(p=probability));
    if(test):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["test"].append(tmp);
        system_dict["local"]["transforms_test"].append(transforms.RandomVerticalFlip(p=probability));
    return system_dict;
def transform_resize(system_dict, input_size, train, val, test, retrieve=False):
    '''
    Apply standard resizing
    Args:
        system_dict (dict): System dictionary storing experiment state and set variables
        input_size (int, list): expected final size
        train (bool): If True, transform applied to training data
        val (bool): If True, transform applied to validation data
        test (bool): If True, transform applied to testing/inferencing data
    Returns:
        dict: updated system dict
    '''
    tmp = {};
    tmp["Resize"] = {};
    tmp["Resize"]["input_size"] = input_size;
    if(train):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["train"].append(tmp);
        system_dict["local"]["transforms_train"].append(transforms.Resize(size=(input_size, input_size)));
    if(val):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["val"].append(tmp);
        system_dict["local"]["transforms_val"].append(transforms.Resize(size=(input_size, input_size)));
    if(test):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["test"].append(tmp);
        system_dict["local"]["transforms_test"].append(transforms.Resize(size=(input_size, input_size)));
    return system_dict;
def transform_normalize(system_dict, mean, std, train, val, test, retrieve=False):
    '''
    Apply mean subtraction and standard normalization
    Args:
        system_dict (dict): System dictionary storing experiment state and set variables
        mean (float, list): Mean value for subtraction
        std (float, list): Normalization factor
        train (bool): If True, transform applied to training data
        val (bool): If True, transform applied to validation data
        test (bool): If True, transform applied to testing/inferencing data
    Returns:
        dict: updated system dict
    '''
    tmp = {};
    tmp["Normalize"] = {};
    tmp["Normalize"]["mean"] = mean;
    tmp["Normalize"]["std"] = std;
    system_dict["local"]["normalize"] = True;
    input_size = system_dict["dataset"]["params"]["input_size"];
    if(type(system_dict["dataset"]["params"]["input_size"]) == tuple or type(system_dict["dataset"]["params"]["input_size"]) == list):
        h = system_dict["dataset"]["params"]["input_size"][0];
        w = system_dict["dataset"]["params"]["input_size"][1];
    else:
        h = system_dict["dataset"]["params"]["input_size"];
        w = system_dict["dataset"]["params"]["input_size"];
    if(train):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["train"].append(tmp);
        system_dict["local"]["transforms_train"].append(transforms.Resize(size=(w, h)));
        system_dict["local"]["transforms_train"].append(transforms.ToTensor())
        system_dict["local"]["transforms_train"].append(transforms.Normalize(mean=mean, std=std));
    if(val):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["val"].append(tmp);
        system_dict["local"]["transforms_val"].append(transforms.Resize(size=(w, h)));
        system_dict["local"]["transforms_val"].append(transforms.ToTensor())
        system_dict["local"]["transforms_val"].append(transforms.Normalize(mean=mean, std=std));
    if(test):
        if(not retrieve):
            system_dict["dataset"]["transforms"]["test"].append(tmp);
        system_dict["local"]["transforms_test"].append(transforms.Resize(size=(w, h)));
        system_dict["local"]["transforms_test"].append(transforms.ToTensor())
        system_dict["local"]["transforms_test"].append(transforms.Normalize(mean=mean, std=std));
    return system_dict;Functions
- def transform_center_crop(system_dict, input_size, train, val, test, retrieve=False)
- 
Apply Center Cropping transformation Args- system_dict:- dict
- System dictionary storing experiment state and set variables
- input_size:- int,- list
- Crop size
- train:- bool
- If True, transform applied to training data
- val:- bool
- If True, transform applied to validation data
- test:- bool
- If True, transform applied to testing/inferencing data
 Returns- dict
- updated system dict
 Expand source codedef transform_center_crop(system_dict, input_size, train, val, test, retrieve=False): ''' Apply Center Cropping transformation Args: system_dict (dict): System dictionary storing experiment state and set variables input_size (int, list): Crop size train (bool): If True, transform applied to training data val (bool): If True, transform applied to validation data test (bool): If True, transform applied to testing/inferencing data Returns: dict: updated system dict ''' tmp = {}; tmp["CenterCrop"] = {}; tmp["CenterCrop"]["input_size"] = input_size; if(train): if(not retrieve): system_dict["dataset"]["transforms"]["train"].append(tmp); system_dict["local"]["transforms_train"].append(transforms.CenterCrop(input_size)); if(val): if(not retrieve): system_dict["dataset"]["transforms"]["val"].append(tmp); system_dict["local"]["transforms_val"].append(transforms.CenterCrop(input_size)); if(test): if(not retrieve): system_dict["dataset"]["transforms"]["test"].append(tmp); system_dict["local"]["transforms_test"].append(transforms.CenterCrop(input_size)); return system_dict;
- def transform_color_jitter(system_dict, brightness, contrast, saturation, hue, train, val, test, retrieve=False)
- 
Apply Color jittering transformations Args- system_dict:- dict
- System dictionary storing experiment state and set variables
- brightness:- float
- Levels to jitter brightness. 0 - min 1 - max
- contrast:- float
- Levels to jitter contrast. 0 - min 1 - max
- saturation:- float
- Levels to jitter saturation. 0 - min 1 - max
- hue:- float
- Levels to jitter hue. 0 - min 1 - max
- train:- bool
- If True, transform applied to training data
- val:- bool
- If True, transform applied to validation data
- test:- bool
- If True, transform applied to testing/inferencing data
 Returns- dict
- updated system dict
 Expand source codedef transform_color_jitter(system_dict, brightness, contrast, saturation, hue, train, val, test, retrieve=False): ''' Apply Color jittering transformations Args: system_dict (dict): System dictionary storing experiment state and set variables brightness (float): Levels to jitter brightness. 0 - min 1 - max contrast (float): Levels to jitter contrast. 0 - min 1 - max saturation (float): Levels to jitter saturation. 0 - min 1 - max hue (float): Levels to jitter hue. 0 - min 1 - max train (bool): If True, transform applied to training data val (bool): If True, transform applied to validation data test (bool): If True, transform applied to testing/inferencing data Returns: dict: updated system dict ''' tmp = {}; tmp["ColorJitter"] = {}; tmp["ColorJitter"]["brightness"] = brightness; tmp["ColorJitter"]["contrast"] = contrast; tmp["ColorJitter"]["saturation"] = saturation; tmp["ColorJitter"]["hue"] = hue; if(train): if(not retrieve): system_dict["dataset"]["transforms"]["train"].append(tmp); system_dict["local"]["transforms_train"].append(transforms.ColorJitter(brightness=brightness, contrast=contrast, saturation=saturation, hue=hue)); if(val): if(not retrieve): system_dict["dataset"]["transforms"]["val"].append(tmp); system_dict["local"]["transforms_val"].append(transforms.ColorJitter(brightness=brightness, contrast=contrast, saturation=saturation, hue=hue)); if(test): if(not retrieve): system_dict["dataset"]["transforms"]["test"].append(tmp); system_dict["local"]["transforms_test"].append(transforms.ColorJitter(brightness=brightness, contrast=contrast, saturation=saturation, hue=hue)); return system_dict;
- def transform_grayscale(system_dict, num_output_channels, train, val, test, retrieve=False)
- 
Not active Expand source codedef transform_grayscale(system_dict, num_output_channels, train, val, test, retrieve=False): ''' Not active ''' tmp = {}; tmp["Grayscale"] = {}; tmp["Grayscale"]["num_output_channels"] = num_output_channels; if(train): if(not retrieve): system_dict["dataset"]["transforms"]["train"].append(tmp); system_dict["local"]["transforms_train"].append(transforms.Grayscale(num_output_channels=num_output_channels)); if(val): if(not retrieve): system_dict["dataset"]["transforms"]["val"].append(tmp); system_dict["local"]["transforms_val"].append(transforms.Grayscale(num_output_channels=num_output_channels)); if(test): if(not retrieve): system_dict["dataset"]["transforms"]["test"].append(tmp); system_dict["local"]["transforms_test"].append(transforms.Grayscale(num_output_channels=num_output_channels)); return system_dict;
- def transform_normalize(system_dict, mean, std, train, val, test, retrieve=False)
- 
Apply mean subtraction and standard normalization Args- system_dict:- dict
- System dictionary storing experiment state and set variables
- mean:- float,- list
- Mean value for subtraction
- std:- float,- list
- Normalization factor
- train:- bool
- If True, transform applied to training data
- val:- bool
- If True, transform applied to validation data
- test:- bool
- If True, transform applied to testing/inferencing data
 Returns- dict
- updated system dict
 Expand source codedef transform_normalize(system_dict, mean, std, train, val, test, retrieve=False): ''' Apply mean subtraction and standard normalization Args: system_dict (dict): System dictionary storing experiment state and set variables mean (float, list): Mean value for subtraction std (float, list): Normalization factor train (bool): If True, transform applied to training data val (bool): If True, transform applied to validation data test (bool): If True, transform applied to testing/inferencing data Returns: dict: updated system dict ''' tmp = {}; tmp["Normalize"] = {}; tmp["Normalize"]["mean"] = mean; tmp["Normalize"]["std"] = std; system_dict["local"]["normalize"] = True; input_size = system_dict["dataset"]["params"]["input_size"]; if(type(system_dict["dataset"]["params"]["input_size"]) == tuple or type(system_dict["dataset"]["params"]["input_size"]) == list): h = system_dict["dataset"]["params"]["input_size"][0]; w = system_dict["dataset"]["params"]["input_size"][1]; else: h = system_dict["dataset"]["params"]["input_size"]; w = system_dict["dataset"]["params"]["input_size"]; if(train): if(not retrieve): system_dict["dataset"]["transforms"]["train"].append(tmp); system_dict["local"]["transforms_train"].append(transforms.Resize(size=(w, h))); system_dict["local"]["transforms_train"].append(transforms.ToTensor()) system_dict["local"]["transforms_train"].append(transforms.Normalize(mean=mean, std=std)); if(val): if(not retrieve): system_dict["dataset"]["transforms"]["val"].append(tmp); system_dict["local"]["transforms_val"].append(transforms.Resize(size=(w, h))); system_dict["local"]["transforms_val"].append(transforms.ToTensor()) system_dict["local"]["transforms_val"].append(transforms.Normalize(mean=mean, std=std)); if(test): if(not retrieve): system_dict["dataset"]["transforms"]["test"].append(tmp); system_dict["local"]["transforms_test"].append(transforms.Resize(size=(w, h))); system_dict["local"]["transforms_test"].append(transforms.ToTensor()) system_dict["local"]["transforms_test"].append(transforms.Normalize(mean=mean, std=std)); return system_dict;
- def transform_random_affine(system_dict, degrees, translate, scale, shear, train, val, test, retrieve=False)
- 
Apply random affine transformations Args- system_dict:- dict
- System dictionary storing experiment state and set variables
- degrees:- float
- Max Rotation range limit for transforms
- scale:- float,- list
- Range for randomly scaling
- shear:- float,- list
- Range for randomly applying sheer changes
- train:- bool
- If True, transform applied to training data
- val:- bool
- If True, transform applied to validation data
- test:- bool
- If True, transform applied to testing/inferencing data
 Returns- dict
- updated system dict
 Expand source codedef transform_random_affine(system_dict, degrees, translate, scale, shear, train, val, test, retrieve=False): ''' Apply random affine transformations Args: system_dict (dict): System dictionary storing experiment state and set variables degrees (float): Max Rotation range limit for transforms scale (float, list): Range for randomly scaling shear (float, list): Range for randomly applying sheer changes train (bool): If True, transform applied to training data val (bool): If True, transform applied to validation data test (bool): If True, transform applied to testing/inferencing data Returns: dict: updated system dict ''' tmp = {}; tmp["RandomAffine"] = {}; tmp["RandomAffine"]["degrees"] = degrees; tmp["RandomAffine"]["translate"] = translate; tmp["RandomAffine"]["scale"] = scale; tmp["RandomAffine"]["shear"] = shear; if(train): if(not retrieve): system_dict["dataset"]["transforms"]["train"].append(tmp); system_dict["local"]["transforms_train"].append(transforms.RandomAffine(degrees, translate=translate, scale=scale, shear=shear)); if(val): if(not retrieve): system_dict["dataset"]["transforms"]["val"].append(tmp); system_dict["local"]["transforms_val"].append(transforms.RandomAffine(degrees, translate=translate, scale=scale, shear=shear)); if(test): if(not retrieve): system_dict["dataset"]["transforms"]["test"].append(tmp); system_dict["local"]["transforms_test"].append(transforms.RandomAffine(degrees, translate=translate, scale=scale, shear=shear)); return system_dict;
- def transform_random_crop(system_dict, input_size, train, val, test, retrieve=True)
- 
Apply Random Cropping transformation Args- system_dict:- dict
- System dictionary storing experiment state and set variables
- input_size:- int,- list
- Crop size
- train:- bool
- If True, transform applied to training data
- val:- bool
- If True, transform applied to validation data
- test:- bool
- If True, transform applied to testing/inferencing data
 Returns- dict
- updated system dict
 Expand source codedef transform_random_crop(system_dict, input_size, train, val, test, retrieve=True): ''' Apply Random Cropping transformation Args: system_dict (dict): System dictionary storing experiment state and set variables input_size (int, list): Crop size train (bool): If True, transform applied to training data val (bool): If True, transform applied to validation data test (bool): If True, transform applied to testing/inferencing data Returns: dict: updated system dict ''' tmp = {}; tmp["RandomCrop"] = {}; tmp["RandomCrop"]["input_size"] = input_size; if(train): if(not retrieve): system_dict["dataset"]["transforms"]["train"].append(tmp); system_dict["local"]["transforms_train"].append(transforms.RandomCrop(input_size)); if(val): if(not retrieve): system_dict["dataset"]["transforms"]["val"].append(tmp); system_dict["local"]["transforms_val"].append(transforms.RandomCrop(input_size)); if(test): if(not retrieve): system_dict["dataset"]["transforms"]["test"].append(tmp); system_dict["local"]["transforms_test"].append(transforms.RandomCrop(input_size)); return system_dict;
- def transform_random_horizontal_flip(system_dict, probability, train, val, test, retrieve=False)
- 
Apply random horizontal flip transformations Args- system_dict:- dict
- System dictionary storing experiment state and set variables
- probability:- float
- Probability of flipping the input image
- train:- bool
- If True, transform applied to training data
- val:- bool
- If True, transform applied to validation data
- test:- bool
- If True, transform applied to testing/inferencing data
 Returns- dict
- updated system dict
 Expand source codedef transform_random_horizontal_flip(system_dict, probability, train, val, test, retrieve=False): ''' Apply random horizontal flip transformations Args: system_dict (dict): System dictionary storing experiment state and set variables probability (float): Probability of flipping the input image train (bool): If True, transform applied to training data val (bool): If True, transform applied to validation data test (bool): If True, transform applied to testing/inferencing data Returns: dict: updated system dict ''' tmp = {}; tmp["RandomHorizontalFlip"] = {}; tmp["RandomHorizontalFlip"]["p"] = probability; if(train): if(not retrieve): system_dict["dataset"]["transforms"]["train"].append(tmp); system_dict["local"]["transforms_train"].append(transforms.RandomHorizontalFlip(p=probability)); if(val): if(not retrieve): system_dict["dataset"]["transforms"]["val"].append(tmp); system_dict["local"]["transforms_val"].append(transforms.RandomHorizontalFlip(p=probability)); if(test): if(not retrieve): system_dict["dataset"]["transforms"]["test"].append(tmp); system_dict["local"]["transforms_test"].append(transforms.RandomHorizontalFlip(p=probability)); return system_dict;
- def transform_random_perspective(system_dict, distortion_scale, probability, train, val, test, retrieve=False)
- 
Apply random perspective transformations Args- system_dict:- dict
- System dictionary storing experiment state and set variables
- distortion_scale:- float
- Max limit for perspective distortion
- probability:- float
- Probability of applying transformation
- train:- bool
- If True, transform applied to training data
- val:- bool
- If True, transform applied to validation data
- test:- bool
- If True, transform applied to testing/inferencing data
 Returns- dict
- updated system dict
 Expand source codedef transform_random_perspective(system_dict, distortion_scale, probability, train, val, test, retrieve=False): ''' Apply random perspective transformations Args: system_dict (dict): System dictionary storing experiment state and set variables distortion_scale (float): Max limit for perspective distortion probability (float): Probability of applying transformation train (bool): If True, transform applied to training data val (bool): If True, transform applied to validation data test (bool): If True, transform applied to testing/inferencing data Returns: dict: updated system dict ''' tmp = {}; tmp["RandomPerspective"] = {}; tmp["RandomPerspective"]["distortion_scale"] = distortion_scale; tmp["RandomPerspective"]["p"] = probability; if(train): if(not retrieve): system_dict["dataset"]["transforms"]["train"].append(tmp); system_dict["local"]["transforms_train"].append(transforms.RandomPerspective(distortion_scale=distortion_scale, p=probability)); if(val): if(not retrieve): system_dict["dataset"]["transforms"]["val"].append(tmp); system_dict["local"]["transforms_val"].append(transforms.RandomPerspective(distortion_scale=distortion_scale, p=probability)); if(test): if(not retrieve): system_dict["dataset"]["transforms"]["test"].append(tmp); system_dict["local"]["transforms_test"].append(transforms.RandomPerspective(distortion_scale=distortion_scale, p=probability)); return system_dict;
- def transform_random_resized_crop(system_dict, input_size, scale, ratio, train, val, test, retrieve=False)
- 
Apply Random Resized Cropping transformation Args- system_dict:- dict
- System dictionary storing experiment state and set variables
- input_size:- int,- list
- Crop size
- scale:- float,- tuple
- scaling ratio limits; for maximum and minimum random scaling
- ratio:- float,- tuple
- aspect ratio limits; for maximum and minmum changes to aspect ratios
- train:- bool
- If True, transform applied to training data
- val:- bool
- If True, transform applied to validation data
- test:- bool
- If True, transform applied to testing/inferencing data
 Returns- dict
- updated system dict
 Expand source codedef transform_random_resized_crop(system_dict, input_size, scale, ratio, train, val, test, retrieve=False): ''' Apply Random Resized Cropping transformation Args: system_dict (dict): System dictionary storing experiment state and set variables input_size (int, list): Crop size scale (float, tuple): scaling ratio limits; for maximum and minimum random scaling ratio (float, tuple): aspect ratio limits; for maximum and minmum changes to aspect ratios train (bool): If True, transform applied to training data val (bool): If True, transform applied to validation data test (bool): If True, transform applied to testing/inferencing data Returns: dict: updated system dict ''' tmp = {}; tmp["RandomResizedCrop"] = {}; tmp["RandomResizedCrop"]["input_size"] = input_size; tmp["RandomResizedCrop"]["scale"] = scale; tmp["RandomResizedCrop"]["ratio"] = ratio; if(train): if(not retrieve): system_dict["dataset"]["transforms"]["train"].append(tmp); system_dict["local"]["transforms_train"].append(transforms.RandomResizedCrop(size=input_size, scale=scale, ratio=ratio)); if(val): if(not retrieve): system_dict["dataset"]["transforms"]["val"].append(tmp); system_dict["local"]["transforms_val"].append(transforms.RandomResizedCrop(size=input_size, scale=scale, ratio=ratio)); if(test): if(not retrieve): system_dict["dataset"]["transforms"]["test"].append(tmp); system_dict["local"]["transforms_test"].append(transforms.RandomResizedCrop(size=input_size, scale=scale, ratio=ratio)); return system_dict;
- def transform_random_rotation(system_dict, degrees, train, val, test, retrieve=False)
- 
Apply random rotation transformations Args- system_dict:- dict
- System dictionary storing experiment state and set variables
- degrees:- float
- Max Rotation range limit for transforms
- train:- bool
- If True, transform applied to training data
- val:- bool
- If True, transform applied to validation data
- test:- bool
- If True, transform applied to testing/inferencing data
 Returns- dict
- updated system dict
 Expand source codedef transform_random_rotation(system_dict, degrees, train, val, test, retrieve=False): ''' Apply random rotation transformations Args: system_dict (dict): System dictionary storing experiment state and set variables degrees (float): Max Rotation range limit for transforms train (bool): If True, transform applied to training data val (bool): If True, transform applied to validation data test (bool): If True, transform applied to testing/inferencing data Returns: dict: updated system dict ''' tmp = {}; tmp["RandomRotation"] = {}; tmp["RandomRotation"]["degrees"] = degrees; if(train): if(not retrieve): system_dict["dataset"]["transforms"]["train"].append(tmp); system_dict["local"]["transforms_train"].append(transforms.RandomRotation(degrees)); if(val): if(not retrieve): system_dict["dataset"]["transforms"]["val"].append(tmp); system_dict["local"]["transforms_val"].append(transforms.RandomRotation(degrees)); if(test): if(not retrieve): system_dict["dataset"]["transforms"]["test"].append(tmp); system_dict["local"]["transforms_test"].append(transforms.RandomRotation(degrees)); return system_dict;
- def transform_random_vertical_flip(system_dict, probability, train, val, test, retrieve=False)
- 
Apply random vertical flip transformations Args- system_dict:- dict
- System dictionary storing experiment state and set variables
- probability:- float
- Probability of flipping the input image
- train:- bool
- If True, transform applied to training data
- val:- bool
- If True, transform applied to validation data
- test:- bool
- If True, transform applied to testing/inferencing data
 Returns- dict
- updated system dict
 Expand source codedef transform_random_vertical_flip(system_dict, probability, train, val, test, retrieve=False): ''' Apply random vertical flip transformations Args: system_dict (dict): System dictionary storing experiment state and set variables probability (float): Probability of flipping the input image train (bool): If True, transform applied to training data val (bool): If True, transform applied to validation data test (bool): If True, transform applied to testing/inferencing data Returns: dict: updated system dict ''' tmp = {}; tmp["RandomVerticalFlip"] = {}; tmp["RandomVerticalFlip"]["p"] = probability; if(train): if(not retrieve): system_dict["dataset"]["transforms"]["train"].append(tmp); system_dict["local"]["transforms_train"].append(transforms.RandomVerticalFlip(p=probability)); if(val): if(not retrieve): system_dict["dataset"]["transforms"]["val"].append(tmp); system_dict["local"]["transforms_val"].append(transforms.RandomVerticalFlip(p=probability)); if(test): if(not retrieve): system_dict["dataset"]["transforms"]["test"].append(tmp); system_dict["local"]["transforms_test"].append(transforms.RandomVerticalFlip(p=probability)); return system_dict;
- def transform_resize(system_dict, input_size, train, val, test, retrieve=False)
- 
Apply standard resizing Args- system_dict:- dict
- System dictionary storing experiment state and set variables
- input_size:- int,- list
- expected final size
- train:- bool
- If True, transform applied to training data
- val:- bool
- If True, transform applied to validation data
- test:- bool
- If True, transform applied to testing/inferencing data
 Returns- dict
- updated system dict
 Expand source codedef transform_resize(system_dict, input_size, train, val, test, retrieve=False): ''' Apply standard resizing Args: system_dict (dict): System dictionary storing experiment state and set variables input_size (int, list): expected final size train (bool): If True, transform applied to training data val (bool): If True, transform applied to validation data test (bool): If True, transform applied to testing/inferencing data Returns: dict: updated system dict ''' tmp = {}; tmp["Resize"] = {}; tmp["Resize"]["input_size"] = input_size; if(train): if(not retrieve): system_dict["dataset"]["transforms"]["train"].append(tmp); system_dict["local"]["transforms_train"].append(transforms.Resize(size=(input_size, input_size))); if(val): if(not retrieve): system_dict["dataset"]["transforms"]["val"].append(tmp); system_dict["local"]["transforms_val"].append(transforms.Resize(size=(input_size, input_size))); if(test): if(not retrieve): system_dict["dataset"]["transforms"]["test"].append(tmp); system_dict["local"]["transforms_test"].append(transforms.Resize(size=(input_size, input_size))); return system_dict;