Module monk.pytorch.transforms.common
Expand source code
from pytorch.transforms.imports import *
from system.imports import *
from pytorch.transforms.transforms import transform_center_crop
from pytorch.transforms.transforms import transform_color_jitter
from pytorch.transforms.transforms import transform_random_affine
from pytorch.transforms.transforms import transform_random_crop
from pytorch.transforms.transforms import transform_random_horizontal_flip
from pytorch.transforms.transforms import transform_random_perspective
from pytorch.transforms.transforms import transform_random_resized_crop
from pytorch.transforms.transforms import transform_grayscale
from pytorch.transforms.transforms import transform_random_rotation
from pytorch.transforms.transforms import transform_random_vertical_flip
from pytorch.transforms.transforms import transform_resize
from pytorch.transforms.transforms import transform_normalize
def set_transforms(system_dict, set_phases):
    '''
    Set transforms depending on the training, validation and testing phases.
    Args:
        system_dict (dict): System dictionary storing experiment state and set variables
        set_phases (list): Phases in which to apply the transforms.
    Returns:
        dict: updated system dict
    '''
    transforms_test = [];
    transforms_train = [];
    transforms_val = [];
    transformations = system_dict["dataset"]["transforms"];
    normalize = False;
    for phase in set_phases:
        tsf = transformations[phase];
        if(phase=="train"):
            train_status = True;
            val_status = False;
            test_status = False;
        elif(phase=="val"):
            train_status = False;
            val_status = True;
            test_status = False;
        else:
            train_status = False;
            val_status = False;
            test_status = True;
        for i in range(len(tsf)):
            name = list(tsf[i].keys())[0]
            input_dict = tsf[i][name];
            train = train_status;
            val = val_status;
            test = test_status;
            if(name == "CenterCrop"):
                system_dict = transform_center_crop(
                    system_dict,
                    input_dict["input_size"], 
                    train, val, test, retrieve=True
                    );
            elif(name == "ColorJitter"):
                system_dict = transform_color_jitter(
                    system_dict, 
                    input_dict["brightness"], input_dict["contrast"], input_dict["saturation"], input_dict["hue"],
                    train, val, test, retrieve=True
                    );
            elif(name == "RandomAffine"):
                system_dict = transform_random_affine(
                    system_dict, 
                    input_dict["degrees"], input_dict["translate"], input_dict["scale"], input_dict["shear"], 
                    train, val, test, retrieve=True
                    );
            elif(name == "RandomCrop"):
                system_dict = transform_random_crop(
                    system_dict, 
                    input_dict["input_size"], 
                    train, val, test, retrieve=True
                    );
            elif(name == "RandomHorizontalFlip"):
                system_dict = transform_random_horizontal_flip(
                    system_dict, 
                    input_dict["p"],
                    train, val, test, retrieve=True
                    );
            elif(name == "RandomPerspective"):
                system_dict = transform_random_perspective(
                    system_dict, 
                    input_dict["distortion_scale"], input_dict["p"], 
                    train, val, test, retrieve=True
                    );
            elif(name == "RandomResizedCrop"):
                system_dict = transform_random_resized_crop(
                    system_dict,
                    input_dict["input_size"], input_dict["scale"], input_dict["ratio"],
                    train, val, test, retrieve=True
                    );
            elif(name == "Grayscale"):
                system_dict = transform_grayscale(
                    system_dict, 
                    input_dict["num_output_channels"], 
                    train, val, test, retrieve=True
                    );
            elif(name == "RandomRotation"):
                system_dict = transform_random_rotation(
                    system_dict, 
                    input_dict["degrees"], 
                    train, val, test, retrieve=True
                    );
            elif(name == "RandomVerticalFlip"):
                system_dict = transform_random_vertical_flip(
                    system_dict, 
                    input_dict["p"],
                    train, val, test, retrieve=True
                    );
            elif(name == "Resize"):
                system_dict = transform_resize(
                    system_dict, 
                    input_dict["input_size"], 
                    train, val, test, retrieve=True
                    );
            elif(name == "Normalize"):
                system_dict = transform_normalize(
                    system_dict,
                    input_dict["mean"], input_dict["std"],
                    train, val, test, retrieve=True
                    );
    return system_dict;Functions
- def set_transforms(system_dict, set_phases)
- 
Set transforms depending on the training, validation and testing phases. Args- system_dict:- dict
- System dictionary storing experiment state and set variables
- set_phases:- list
- Phases in which to apply the transforms.
 Returns- dict
- updated system dict
 Expand source codedef set_transforms(system_dict, set_phases): ''' Set transforms depending on the training, validation and testing phases. Args: system_dict (dict): System dictionary storing experiment state and set variables set_phases (list): Phases in which to apply the transforms. Returns: dict: updated system dict ''' transforms_test = []; transforms_train = []; transforms_val = []; transformations = system_dict["dataset"]["transforms"]; normalize = False; for phase in set_phases: tsf = transformations[phase]; if(phase=="train"): train_status = True; val_status = False; test_status = False; elif(phase=="val"): train_status = False; val_status = True; test_status = False; else: train_status = False; val_status = False; test_status = True; for i in range(len(tsf)): name = list(tsf[i].keys())[0] input_dict = tsf[i][name]; train = train_status; val = val_status; test = test_status; if(name == "CenterCrop"): system_dict = transform_center_crop( system_dict, input_dict["input_size"], train, val, test, retrieve=True ); elif(name == "ColorJitter"): system_dict = transform_color_jitter( system_dict, input_dict["brightness"], input_dict["contrast"], input_dict["saturation"], input_dict["hue"], train, val, test, retrieve=True ); elif(name == "RandomAffine"): system_dict = transform_random_affine( system_dict, input_dict["degrees"], input_dict["translate"], input_dict["scale"], input_dict["shear"], train, val, test, retrieve=True ); elif(name == "RandomCrop"): system_dict = transform_random_crop( system_dict, input_dict["input_size"], train, val, test, retrieve=True ); elif(name == "RandomHorizontalFlip"): system_dict = transform_random_horizontal_flip( system_dict, input_dict["p"], train, val, test, retrieve=True ); elif(name == "RandomPerspective"): system_dict = transform_random_perspective( system_dict, input_dict["distortion_scale"], input_dict["p"], train, val, test, retrieve=True ); elif(name == "RandomResizedCrop"): system_dict = transform_random_resized_crop( system_dict, input_dict["input_size"], input_dict["scale"], input_dict["ratio"], train, val, test, retrieve=True ); elif(name == "Grayscale"): system_dict = transform_grayscale( system_dict, input_dict["num_output_channels"], train, val, test, retrieve=True ); elif(name == "RandomRotation"): system_dict = transform_random_rotation( system_dict, input_dict["degrees"], train, val, test, retrieve=True ); elif(name == "RandomVerticalFlip"): system_dict = transform_random_vertical_flip( system_dict, input_dict["p"], train, val, test, retrieve=True ); elif(name == "Resize"): system_dict = transform_resize( system_dict, input_dict["input_size"], train, val, test, retrieve=True ); elif(name == "Normalize"): system_dict = transform_normalize( system_dict, input_dict["mean"], input_dict["std"], train, val, test, retrieve=True ); return system_dict;