Module monk.pytorch.training.params
Expand source code
from pytorch.training.imports import *
from system.imports import *
def set_num_epochs(num_epochs, system_dict):
    '''
    Set number of training epochs
    Args:
        num_epochs (int): Number of epochs to train the network
        system_dict (dict): System dictionary storing experiment state and set variables
    Returns:
        dict: updated system dict
    '''
    system_dict["hyper-parameters"]["num_epochs"] = num_epochs;
    return system_dict;
def set_display_progress_realtime(value, system_dict):
    '''
    Set verbosity levels for iterations
    Args:
        value (bool): If True, displays progress for every iteration in the epoch
        system_dict (dict): System dictionary storing experiment state and set variables
    Returns:
        dict: updated system dict
    '''
    system_dict["training"]["settings"]["display_progress_realtime"] = value;
    return system_dict;
def set_display_progress(value, system_dict):
    '''
    Set all training params for epochs
    Args:
        value (bool): If True, displays summary post every epoch
        system_dict (dict): System dictionary storing experiment state and set variables
    Returns:
        dict: updated system dict
    '''
    system_dict["training"]["settings"]["display_progress"] = value;
    return system_dict;
def set_save_intermediate_models(value, system_dict):
    '''
    Set whether to save models post every epoch or not
    Args:
        value (bool): If True, saves model weight post every epoch
        system_dict (dict): System dictionary storing experiment state and set variables
    Returns:
        dict: updated system dict
    '''
    system_dict["training"]["settings"]["save_intermediate_models"] = value;
    return system_dict;
def set_save_training_logs(value, system_dict):
    '''
    Set whether to save training logs or not
    Args:
        value (bool): If True, saves all training and validation metrics. Required for comparison.
        system_dict (dict): System dictionary storing experiment state and set variables
    Returns:
        dict: updated system dict
    '''
    system_dict["training"]["settings"]["save_training_logs"] = value;
    return system_dict;
def set_intermediate_model_prefix(value, system_dict):
    '''
    Set a prefix to names of intermediate models being saved
    Args:
        value (str): Appends a prefix to intermediate weights
        system_dict (dict): System dictionary storing experiment state and set variables
    Returns:
        dict: updated system dict
    '''
    system_dict["training"]["settings"]["intermediate_model_prefix"] = value;
    return system_dict;
Functions
def set_display_progress(value, system_dict)- 
Set all training params for epochs
Args
value:bool- If True, displays summary post every epoch
 system_dict:dict- System dictionary storing experiment state and set variables
 
Returns
dict- updated system dict
 
Expand source code
def set_display_progress(value, system_dict): ''' Set all training params for epochs Args: value (bool): If True, displays summary post every epoch system_dict (dict): System dictionary storing experiment state and set variables Returns: dict: updated system dict ''' system_dict["training"]["settings"]["display_progress"] = value; return system_dict; def set_display_progress_realtime(value, system_dict)- 
Set verbosity levels for iterations
Args
value:bool- If True, displays progress for every iteration in the epoch
 system_dict:dict- System dictionary storing experiment state and set variables
 
Returns
dict- updated system dict
 
Expand source code
def set_display_progress_realtime(value, system_dict): ''' Set verbosity levels for iterations Args: value (bool): If True, displays progress for every iteration in the epoch system_dict (dict): System dictionary storing experiment state and set variables Returns: dict: updated system dict ''' system_dict["training"]["settings"]["display_progress_realtime"] = value; return system_dict; def set_intermediate_model_prefix(value, system_dict)- 
Set a prefix to names of intermediate models being saved
Args
value:str- Appends a prefix to intermediate weights
 system_dict:dict- System dictionary storing experiment state and set variables
 
Returns
dict- updated system dict
 
Expand source code
def set_intermediate_model_prefix(value, system_dict): ''' Set a prefix to names of intermediate models being saved Args: value (str): Appends a prefix to intermediate weights system_dict (dict): System dictionary storing experiment state and set variables Returns: dict: updated system dict ''' system_dict["training"]["settings"]["intermediate_model_prefix"] = value; return system_dict; def set_num_epochs(num_epochs, system_dict)- 
Set number of training epochs
Args
num_epochs:int- Number of epochs to train the network
 system_dict:dict- System dictionary storing experiment state and set variables
 
Returns
dict- updated system dict
 
Expand source code
def set_num_epochs(num_epochs, system_dict): ''' Set number of training epochs Args: num_epochs (int): Number of epochs to train the network system_dict (dict): System dictionary storing experiment state and set variables Returns: dict: updated system dict ''' system_dict["hyper-parameters"]["num_epochs"] = num_epochs; return system_dict; def set_save_intermediate_models(value, system_dict)- 
Set whether to save models post every epoch or not
Args
value:bool- If True, saves model weight post every epoch
 system_dict:dict- System dictionary storing experiment state and set variables
 
Returns
dict- updated system dict
 
Expand source code
def set_save_intermediate_models(value, system_dict): ''' Set whether to save models post every epoch or not Args: value (bool): If True, saves model weight post every epoch system_dict (dict): System dictionary storing experiment state and set variables Returns: dict: updated system dict ''' system_dict["training"]["settings"]["save_intermediate_models"] = value; return system_dict; def set_save_training_logs(value, system_dict)- 
Set whether to save training logs or not
Args
value:bool- If True, saves all training and validation metrics. Required for comparison.
 system_dict:dict- System dictionary storing experiment state and set variables
 
Returns
dict- updated system dict
 
Expand source code
def set_save_training_logs(value, system_dict): ''' Set whether to save training logs or not Args: value (bool): If True, saves all training and validation metrics. Required for comparison. system_dict (dict): System dictionary storing experiment state and set variables Returns: dict: updated system dict ''' system_dict["training"]["settings"]["save_training_logs"] = value; return system_dict;