Module monk.pytorch.losses.retrieve_loss
Expand source code
from pytorch.losses.imports import *
from system.imports import *
def retrieve_loss(system_dict):
    '''
    Retrieve loss post state changes
    Args:
        system_dict (dict): System dictionary storing experiment state and set variables
    Returns:
        dict: updated system dict
    '''
    system_dict["local"]["criterion"] = system_dict["hyper-parameters"]["loss"]["name"];
    name = system_dict["local"]["criterion"];
    if(name == "l1"):
        system_dict["local"]["criterion"] = torch.nn.L1Loss(
            reduction='mean');
    elif(name == "l2"):
        system_dict["local"]["criterion"] = torch.nn.MSELoss(
            reduction='mean');
    elif(name == "softmaxcrossentropy"):
        system_dict["local"]["criterion"] = torch.nn.CrossEntropyLoss(
            weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"], 
            reduction='mean');
    elif(name == "crossentropy"):
        system_dict["local"]["criterion"] = torch.nn.NLLLoss(
            weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"], 
            reduction='mean');
    elif(name == "sigmoidbinarycrossentropy"):
        system_dict["local"]["criterion"] = torch.nn.BCEWithLogitsLoss(
            weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"], 
            reduction='mean');
    elif(name == "binarycrossentropy"):
        system_dict["local"]["criterion"] = torch.nn.BCELoss(
            weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"], 
            reduction='mean');
    elif(name == "kldiv"):
        system_dict["local"]["criterion"] = torch.nn.KLDivLoss(
            reduction='mean');
    elif(name == "poissonnll"):
        system_dict["local"]["criterion"] = torch.nn.PoissonNLLLoss(
            log_input=system_dict["hyper-parameters"]["loss"]["params"]["log_pre_applied"],
            reduction='mean');
    elif(name == "huber"):
        system_dict["local"]["criterion"] = torch.nn.SmoothL1Loss(
            reduction='mean');
    elif(name == "hinge"):
        system_dict["local"]["criterion"] = torch.nn.HingeEmbeddingLoss(
            margin=system_dict["hyper-parameters"]["loss"]["params"]["margin"],
            reduction='mean');
    elif(name == "squaredhinge"):
        system_dict["local"]["criterion"] = torch.nn.SoftMarginLoss(
            reduction='mean');
    elif(name == "multimargin"):
        system_dict["local"]["criterion"] = torch.nn.MultiMarginLoss(
            p=1,
            margin=system_dict["hyper-parameters"]["loss"]["params"]["margin"],
            reduction='mean');
    elif(name == "squaredmultimargin"):
        system_dict["local"]["criterion"] = torch.nn.MultiMarginLoss(
            p=2,
            margin=system_dict["hyper-parameters"]["loss"]["params"]["margin"],
            reduction='mean');
    elif(name == "multilabelmargin"):
        system_dict["local"]["criterion"] = torch.nn.MultiLabelMarginLoss(
            reduction='mean');
    elif(name == "multilabelsoftmargin"):
        system_dict["local"]["criterion"] = torch.nn.MultiLabelSoftMarginLoss(
            reduction='mean');
    return system_dict;
Functions
def retrieve_loss(system_dict)- 
Retrieve loss post state changes
Args
system_dict:dict- System dictionary storing experiment state and set variables
 
Returns
dict- updated system dict
 
Expand source code
def retrieve_loss(system_dict): ''' Retrieve loss post state changes Args: system_dict (dict): System dictionary storing experiment state and set variables Returns: dict: updated system dict ''' system_dict["local"]["criterion"] = system_dict["hyper-parameters"]["loss"]["name"]; name = system_dict["local"]["criterion"]; if(name == "l1"): system_dict["local"]["criterion"] = torch.nn.L1Loss( reduction='mean'); elif(name == "l2"): system_dict["local"]["criterion"] = torch.nn.MSELoss( reduction='mean'); elif(name == "softmaxcrossentropy"): system_dict["local"]["criterion"] = torch.nn.CrossEntropyLoss( weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"], reduction='mean'); elif(name == "crossentropy"): system_dict["local"]["criterion"] = torch.nn.NLLLoss( weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"], reduction='mean'); elif(name == "sigmoidbinarycrossentropy"): system_dict["local"]["criterion"] = torch.nn.BCEWithLogitsLoss( weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"], reduction='mean'); elif(name == "binarycrossentropy"): system_dict["local"]["criterion"] = torch.nn.BCELoss( weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"], reduction='mean'); elif(name == "kldiv"): system_dict["local"]["criterion"] = torch.nn.KLDivLoss( reduction='mean'); elif(name == "poissonnll"): system_dict["local"]["criterion"] = torch.nn.PoissonNLLLoss( log_input=system_dict["hyper-parameters"]["loss"]["params"]["log_pre_applied"], reduction='mean'); elif(name == "huber"): system_dict["local"]["criterion"] = torch.nn.SmoothL1Loss( reduction='mean'); elif(name == "hinge"): system_dict["local"]["criterion"] = torch.nn.HingeEmbeddingLoss( margin=system_dict["hyper-parameters"]["loss"]["params"]["margin"], reduction='mean'); elif(name == "squaredhinge"): system_dict["local"]["criterion"] = torch.nn.SoftMarginLoss( reduction='mean'); elif(name == "multimargin"): system_dict["local"]["criterion"] = torch.nn.MultiMarginLoss( p=1, margin=system_dict["hyper-parameters"]["loss"]["params"]["margin"], reduction='mean'); elif(name == "squaredmultimargin"): system_dict["local"]["criterion"] = torch.nn.MultiMarginLoss( p=2, margin=system_dict["hyper-parameters"]["loss"]["params"]["margin"], reduction='mean'); elif(name == "multilabelmargin"): system_dict["local"]["criterion"] = torch.nn.MultiLabelMarginLoss( reduction='mean'); elif(name == "multilabelsoftmargin"): system_dict["local"]["criterion"] = torch.nn.MultiLabelSoftMarginLoss( reduction='mean'); return system_dict;