Module monk.pytorch.datasets.csv_dataset
Expand source code
from pytorch.datasets.imports import *
from system.imports import *
class DatasetCustom(Dataset):
    '''
    Class for single label CSV dataset 
    Args:
        img_list (str): List of images 
        label_list (str): List of labels in the same order as images
        prefix (str): Path to folder containing images
        transform (torchvision transforms): List of compiled transforms
    '''
    def __init__(self, img_list, label_list, prefix, transform=None):
        self.img_list = img_list;
        self.label_list = label_list;
        self.transform = transform;
        self.prefix = prefix;
    
    
    def __len__(self):
        '''
        Returns length of images in dataset
        Args:
            None
        Returns:
            int: Length of images in dataset
        '''
        return len(self.img_list)
    
    
    def __getitem__(self, index):
        '''
        Returns transformed image and label as per index
        Args:
            None
        Returns:
            pytorch tensor: Image loaded as pytorch tensor
            int: Class ID
        '''
        image_name = self.prefix + "/" + self.img_list[index];
        image = Image.open(image_name).convert('RGB');
        label = int(self.label_list[index]);       
        if self.transform is not None:
            image = self.transform(image);
        return image, label
Classes
class DatasetCustom (img_list, label_list, prefix, transform=None)- 
Class for single label CSV dataset
Args
img_list:str- List of images
 label_list:str- List of labels in the same order as images
 prefix:str- Path to folder containing images
 transform:torchvisiontransforms- List of compiled transforms
 
Expand source code
class DatasetCustom(Dataset): ''' Class for single label CSV dataset Args: img_list (str): List of images label_list (str): List of labels in the same order as images prefix (str): Path to folder containing images transform (torchvision transforms): List of compiled transforms ''' def __init__(self, img_list, label_list, prefix, transform=None): self.img_list = img_list; self.label_list = label_list; self.transform = transform; self.prefix = prefix; def __len__(self): ''' Returns length of images in dataset Args: None Returns: int: Length of images in dataset ''' return len(self.img_list) def __getitem__(self, index): ''' Returns transformed image and label as per index Args: None Returns: pytorch tensor: Image loaded as pytorch tensor int: Class ID ''' image_name = self.prefix + "/" + self.img_list[index]; image = Image.open(image_name).convert('RGB'); label = int(self.label_list[index]); if self.transform is not None: image = self.transform(image); return image, labelAncestors
- torch.utils.data.dataset.Dataset