Module monk.gluon.transforms.return_transform
Expand source code
from gluon.transforms.imports import *
from system.imports import *
def set_transform_trainval(system_dict):
'''
Load training and validation transforms in main state
Args:
system_dict (dict): System dictionary storing experiment state and set variables
Returns:
dict: updated system dict
'''
if(not system_dict["local"]["normalize"]):
if(not system_dict["local"]["applied_train_tensor"]):
if(type(system_dict["dataset"]["params"]["input_size"]) == tuple or type(system_dict["dataset"]["params"]["input_size"]) == list):
h = system_dict["dataset"]["params"]["input_size"][0];
w = system_dict["dataset"]["params"]["input_size"][1];
else:
h = system_dict["dataset"]["params"]["input_size"];
w = system_dict["dataset"]["params"]["input_size"];
system_dict["local"]["transforms_train"].append(transforms.Resize(size=(w, h)));
system_dict["local"]["transforms_train"].append(transforms.ToTensor());
system_dict["local"]["transforms_val"].append(transforms.Resize(size=(w, h)));
system_dict["local"]["transforms_val"].append(transforms.ToTensor());
system_dict["local"]["applied_train_tensor"] = True;
system_dict["local"]["data_transforms"]["train"] = transforms.Compose(system_dict["local"]["transforms_train"]);
system_dict["local"]["data_transforms"]["val"] = transforms.Compose(system_dict["local"]["transforms_val"]);
return system_dict;
def set_transform_test(system_dict):
'''
Load testing transforms in main state
Args:
system_dict (dict): System dictionary storing experiment state and set variables
Returns:
dict: updated system dict
'''
if(not system_dict["local"]["normalize"]):
if(not system_dict["local"]["applied_test_tensor"]):
if(type(system_dict["dataset"]["params"]["input_size"]) == tuple or type(system_dict["dataset"]["params"]["input_size"]) == list):
h = system_dict["dataset"]["params"]["input_size"][0];
w = system_dict["dataset"]["params"]["input_size"][1];
else:
h = system_dict["dataset"]["params"]["input_size"];
w = system_dict["dataset"]["params"]["input_size"];
system_dict["local"]["transforms_test"].append(transforms.Resize(size=(w, h)));
system_dict["local"]["transforms_test"].append(transforms.ToTensor());
system_dict["local"]["applied_test_tensor"] = True;
system_dict["local"]["data_transforms"]["test"] = transforms.Compose(system_dict["local"]["transforms_test"]);
return system_dict;
Functions
def set_transform_test(system_dict)
-
Load testing transforms in main state
Args
system_dict
:dict
- System dictionary storing experiment state and set variables
Returns
dict
- updated system dict
Expand source code
def set_transform_test(system_dict): ''' Load testing transforms in main state Args: system_dict (dict): System dictionary storing experiment state and set variables Returns: dict: updated system dict ''' if(not system_dict["local"]["normalize"]): if(not system_dict["local"]["applied_test_tensor"]): if(type(system_dict["dataset"]["params"]["input_size"]) == tuple or type(system_dict["dataset"]["params"]["input_size"]) == list): h = system_dict["dataset"]["params"]["input_size"][0]; w = system_dict["dataset"]["params"]["input_size"][1]; else: h = system_dict["dataset"]["params"]["input_size"]; w = system_dict["dataset"]["params"]["input_size"]; system_dict["local"]["transforms_test"].append(transforms.Resize(size=(w, h))); system_dict["local"]["transforms_test"].append(transforms.ToTensor()); system_dict["local"]["applied_test_tensor"] = True; system_dict["local"]["data_transforms"]["test"] = transforms.Compose(system_dict["local"]["transforms_test"]); return system_dict;
def set_transform_trainval(system_dict)
-
Load training and validation transforms in main state
Args
system_dict
:dict
- System dictionary storing experiment state and set variables
Returns
dict
- updated system dict
Expand source code
def set_transform_trainval(system_dict): ''' Load training and validation transforms in main state Args: system_dict (dict): System dictionary storing experiment state and set variables Returns: dict: updated system dict ''' if(not system_dict["local"]["normalize"]): if(not system_dict["local"]["applied_train_tensor"]): if(type(system_dict["dataset"]["params"]["input_size"]) == tuple or type(system_dict["dataset"]["params"]["input_size"]) == list): h = system_dict["dataset"]["params"]["input_size"][0]; w = system_dict["dataset"]["params"]["input_size"][1]; else: h = system_dict["dataset"]["params"]["input_size"]; w = system_dict["dataset"]["params"]["input_size"]; system_dict["local"]["transforms_train"].append(transforms.Resize(size=(w, h))); system_dict["local"]["transforms_train"].append(transforms.ToTensor()); system_dict["local"]["transforms_val"].append(transforms.Resize(size=(w, h))); system_dict["local"]["transforms_val"].append(transforms.ToTensor()); system_dict["local"]["applied_train_tensor"] = True; system_dict["local"]["data_transforms"]["train"] = transforms.Compose(system_dict["local"]["transforms_train"]); system_dict["local"]["data_transforms"]["val"] = transforms.Compose(system_dict["local"]["transforms_val"]); return system_dict;