Module monk.gluon.optimizers.optimizers
Expand source code
from gluon.optimizers.imports import *
from system.imports import *
def sgd(system_dict, learning_rate, momentum=0, weight_decay=0, momentum_dampening_rate=0, clipnorm=0.0, clipvalue=0.0):
    '''
    Select stochastic gradient descent optimizer
    Args:
        system_dict (dict): System dictionary storing experiment state and set variables
        learning_rate (float): Initial base learning rate
        momentum (float): Momentum value for driving the weights towards minima
        weight_decay (float): Value for regularizing weights post every update
        momentum_dampening_rate (float): Reduction rate for momentum
        clipnorm (float): Gradient clipping factor
        clipvalue (float): Value for clipping
    Returns:
        dict: updated system dict
    '''
    system_dict["local"]["optimizer"] = "sgd";
    system_dict["hyper-parameters"]["learning_rate"] = learning_rate;
    system_dict["hyper-parameters"]["optimizer"]["name"] = "sgd";
    system_dict["hyper-parameters"]["optimizer"]["params"]["lr"] = learning_rate;
    system_dict["hyper-parameters"]["optimizer"]["params"]["momentum"] = momentum;
    system_dict["hyper-parameters"]["optimizer"]["params"]["weight_decay"] = weight_decay;
    system_dict["hyper-parameters"]["optimizer"]["params"]["momentum_dampening_rate"] = momentum_dampening_rate;
    system_dict["hyper-parameters"]["optimizer"]["params"]["clipnorm"] = clipnorm;
    system_dict["hyper-parameters"]["optimizer"]["params"]["clipvalue"] = clipvalue;
    return system_dict;
def nesterov_sgd(system_dict, learning_rate, momentum=0, weight_decay=0, momentum_dampening_rate=0, clipnorm=0.0, clipvalue=0.0):
    '''
    Select stochastic gradient descent optimizer with nesterov acceleration
    Args:
        system_dict (dict): System dictionary storing experiment state and set variables
        learning_rate (float): Initial base learning rate
        momentum (float): Momentum value for driving the weights towards minima
        weight_decay (float): Value for regularizing weights post every update
        momentum_dampening_rate (float): Reduction rate for momentum
        clipnorm (float): Gradient clipping factor
        clipvalue (float): Value for clipping
    Returns:
        dict: updated system dict
    '''
    system_dict["local"]["optimizer"] = "nesterov_sgd";
    system_dict["hyper-parameters"]["learning_rate"] = learning_rate;
    system_dict["hyper-parameters"]["optimizer"]["name"] = "nesterov_sgd";
    system_dict["hyper-parameters"]["optimizer"]["params"]["lr"] = learning_rate;
    system_dict["hyper-parameters"]["optimizer"]["params"]["momentum"] = momentum;
    system_dict["hyper-parameters"]["optimizer"]["params"]["weight_decay"] = weight_decay;
    system_dict["hyper-parameters"]["optimizer"]["params"]["momentum_dampening_rate"] = momentum_dampening_rate;
    system_dict["hyper-parameters"]["optimizer"]["params"]["clipnorm"] = clipnorm;
    system_dict["hyper-parameters"]["optimizer"]["params"]["clipvalue"] = clipvalue;
    return system_dict;
def rmsprop(system_dict, learning_rate, decay_rate=0.99, epsilon=1e-08, weight_decay=0, 
    clipnorm=0.0, clipvalue=0.0):
    '''
    Select root mean score prop optimizer
    Args:
        system_dict (dict): System dictionary storing experiment state and set variables
        learning_rate (float): Initial base learning rate
        decay_rate (float): A decay factor of moving average over past squared gradient.
        epsilon (float): A value to avoid division by zero
        weight_decay (float): Value for regularizing weights post every update
        clipnorm (float): Gradient clipping factor
        clipvalue (float): Value for clipping
    Returns:
        dict: updated system dict
    '''
    system_dict["local"]["optimizer"] = "rmsprop";
    system_dict["hyper-parameters"]["learning_rate"] = learning_rate;
    system_dict["hyper-parameters"]["optimizer"]["name"] = "rmsprop";
    system_dict["hyper-parameters"]["optimizer"]["params"]["lr"] = learning_rate;
    system_dict["hyper-parameters"]["optimizer"]["params"]["epsilon"] = epsilon;
    system_dict["hyper-parameters"]["optimizer"]["params"]["decay_rate"] = decay_rate;
    system_dict["hyper-parameters"]["optimizer"]["params"]["weight_decay"] = weight_decay;
    system_dict["hyper-parameters"]["optimizer"]["params"]["clipnorm"] = clipnorm;
    system_dict["hyper-parameters"]["optimizer"]["params"]["clipvalue"] = clipvalue;
    return system_dict;
def momentum_rmsprop(system_dict, learning_rate, decay_rate=0.99, epsilon=1e-08, weight_decay=0, 
    momentum=0.9):
    '''
    Select root mean score prop optimizer with momentum
    Args:
        system_dict (dict): System dictionary storing experiment state and set variables
        learning_rate (float): Initial base learning rate
        decay_rate (float): A decay factor of moving average over past squared gradient.
        epsilon (float): A value to avoid division by zero
        weight_decay (float): Value for regularizing weights post every update
        momentum (float): Momentum value for driving the weights towards minima
        clipnorm (float): Gradient clipping factor
        clipvalue (float): Value for clipping
    Returns:
        dict: updated system dict
    '''
    system_dict["local"]["optimizer"] = "rmsprop";
    system_dict["hyper-parameters"]["learning_rate"] = learning_rate;
    system_dict["hyper-parameters"]["optimizer"]["name"] = "rmsprop";
    system_dict["hyper-parameters"]["optimizer"]["params"]["lr"] = learning_rate;
    system_dict["hyper-parameters"]["optimizer"]["params"]["epsilon"] = epsilon;
    system_dict["hyper-parameters"]["optimizer"]["params"]["decay_rate"] = decay_rate;
    system_dict["hyper-parameters"]["optimizer"]["params"]["weight_decay"] = weight_decay;
    system_dict["hyper-parameters"]["optimizer"]["params"]["momentum"] = momentum;
    return system_dict;
def adam(system_dict, learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-08, weight_decay=0, amsgrad=False, clipnorm=0.0, clipvalue=0.0):
    '''
    Select ADAM optimizer
    Args:
        system_dict (dict): System dictionary storing experiment state and set variables
        learning_rate (float): Initial base learning rate
        beta1 (float): Exponential decay rate for first momentum estimates
        beta2 (float): Exponential decay rate for first second estimates
        weight_decay (float): Value for regularizing weights post every update
        amsgrad (bool): If True, AMSGrad variant of this algorithm is used
        epsilon (float): A value to avoid division by zero
        clipnorm (float): Gradient clipping factor
        clipvalue (float): Value for clipping
    Returns:
        dict: updated system dict
    '''
    system_dict["local"]["optimizer"] = "adam";
    system_dict["hyper-parameters"]["learning_rate"] = learning_rate;
    system_dict["hyper-parameters"]["optimizer"]["name"] = "adam";
    system_dict["hyper-parameters"]["optimizer"]["params"]["lr"] = learning_rate;
    system_dict["hyper-parameters"]["optimizer"]["params"]["beta1"] = beta1;
    system_dict["hyper-parameters"]["optimizer"]["params"]["beta2"] = beta2;
    system_dict["hyper-parameters"]["optimizer"]["params"]["epsilon"] = epsilon;
    system_dict["hyper-parameters"]["optimizer"]["params"]["weight_decay"] = weight_decay;
    system_dict["hyper-parameters"]["optimizer"]["params"]["amsgrad"] = amsgrad;
    system_dict["hyper-parameters"]["optimizer"]["params"]["clipnorm"] = clipnorm;
    system_dict["hyper-parameters"]["optimizer"]["params"]["clipvalue"] = clipvalue;
    return system_dict;
def adamax(system_dict, learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-08, weight_decay=0, clipnorm=0.0, clipvalue=0.0):
    '''
    Select Adamax optimizer
    Args:
        system_dict (dict): System dictionary storing experiment state and set variables
        learning_rate (float): Initial base learning rate
        beta1 (float): Exponential decay rate for first momentum estimates
        beta2 (float): Exponential decay rate for first second estimates
        weight_decay (float): Value for regularizing weights post every update
        epsilon (float): A value to avoid division by zero
        clipnorm (float): Gradient clipping factor
        clipvalue (float): Value for clipping
    Returns:
        dict: updated system dict
    '''
    system_dict["local"]["optimizer"] = "adamax";
    system_dict["hyper-parameters"]["learning_rate"] = learning_rate;
    system_dict["hyper-parameters"]["optimizer"]["name"] = "adamax";
    system_dict["hyper-parameters"]["optimizer"]["params"]["lr"] = learning_rate;
    system_dict["hyper-parameters"]["optimizer"]["params"]["beta1"] = beta1;
    system_dict["hyper-parameters"]["optimizer"]["params"]["beta2"] = beta2;
    system_dict["hyper-parameters"]["optimizer"]["params"]["epsilon"] = epsilon;
    system_dict["hyper-parameters"]["optimizer"]["params"]["weight_decay"] = weight_decay;
    system_dict["hyper-parameters"]["optimizer"]["params"]["clipnorm"] = clipnorm;
    system_dict["hyper-parameters"]["optimizer"]["params"]["clipvalue"] = clipvalue;
    return system_dict;
def adadelta(system_dict, learning_rate, rho=0.9, epsilon=1e-06, weight_decay=0, clipnorm=0.0, clipvalue=0.0):
    '''
    Select Adadelta optimizer
    Args:
        system_dict (dict): System dictionary storing experiment state and set variables
        learning_rate (float): Initial base learning rate
        rho (float): Exponential decay rate for momentum estimates
        weight_decay (float): Value for regularizing weights post every update
        epsilon (float): A value to avoid division by zero
        clipnorm (float): Gradient clipping factor
        clipvalue (float): Value for clipping
    Returns:
        dict: updated system dict
    '''
    system_dict["local"]["optimizer"] = "adadelta";
    system_dict["hyper-parameters"]["learning_rate"] = learning_rate;
    system_dict["hyper-parameters"]["optimizer"]["name"] = "adadelta";
    system_dict["hyper-parameters"]["optimizer"]["params"]["lr"] = learning_rate;
    system_dict["hyper-parameters"]["optimizer"]["params"]["rho"] = rho;
    system_dict["hyper-parameters"]["optimizer"]["params"]["epsilon"] = epsilon;
    system_dict["hyper-parameters"]["optimizer"]["params"]["weight_decay"] = weight_decay;
    system_dict["hyper-parameters"]["optimizer"]["params"]["clipnorm"] = clipnorm;
    system_dict["hyper-parameters"]["optimizer"]["params"]["clipvalue"] = clipvalue;
    return system_dict;
def adagrad(system_dict, learning_rate, learning_rate_decay=0, weight_decay=0, epsilon=0, clipnorm=0.0, clipvalue=0.0):
    '''
    Select Adagrad optimizer
    Args:
        system_dict (dict): System dictionary storing experiment state and set variables
        learning_rate (float): Initial base learning rate
        learning_rate_decay (float): Learning rate decay factor
        weight_decay (float): Value for regularizing weights post every update
        epsilon (float): A value to avoid division by zero
        clipnorm (float): Gradient clipping factor
        clipvalue (float): Value for clipping
    Returns:
        dict: updated system dict
    '''
    system_dict["local"]["optimizer"] = "adagrad";
    system_dict["hyper-parameters"]["learning_rate"] = learning_rate;
    system_dict["hyper-parameters"]["optimizer"]["name"] = "adagrad";
    system_dict["hyper-parameters"]["optimizer"]["params"]["lr"] = learning_rate;
    system_dict["hyper-parameters"]["optimizer"]["params"]["lr_decay"] = learning_rate_decay;
    system_dict["hyper-parameters"]["optimizer"]["params"]["epsilon"] = epsilon;
    system_dict["hyper-parameters"]["optimizer"]["params"]["weight_decay"] = weight_decay;
    system_dict["hyper-parameters"]["optimizer"]["params"]["clipnorm"] = clipnorm;
    system_dict["hyper-parameters"]["optimizer"]["params"]["clipvalue"] = clipvalue;
    return system_dict;
def nesterov_adam(system_dict, learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-08, weight_decay=0, amsgrad=False,
    momentum_decay=0.004, clipnorm=0.0, clipvalue=0.0):
    '''
    Select ADAM optimizer with nesterov momentum acceleration
    Args:
        system_dict (dict): System dictionary storing experiment state and set variables
        learning_rate (float): Initial base learning rate
        beta1 (float): Exponential decay rate for first momentum estimates
        beta2 (float): Exponential decay rate for first second estimates
        weight_decay (float): Value for regularizing weights post every update
        amsgrad (bool): If True, AMSGrad variant of this algorithm is used
        epsilon (float): A value to avoid division by zero
        clipnorm (float): Gradient clipping factor
        clipvalue (float): Value for clipping
    Returns:
        dict: updated system dict
    '''
    system_dict["local"]["optimizer"] = "nadam";
    system_dict["hyper-parameters"]["learning_rate"] = learning_rate;
    system_dict["hyper-parameters"]["optimizer"]["name"] = "nadam";
    system_dict["hyper-parameters"]["optimizer"]["params"]["lr"] = learning_rate;
    system_dict["hyper-parameters"]["optimizer"]["params"]["beta1"] = beta1;
    system_dict["hyper-parameters"]["optimizer"]["params"]["beta2"] = beta2;
    system_dict["hyper-parameters"]["optimizer"]["params"]["epsilon"] = epsilon;
    system_dict["hyper-parameters"]["optimizer"]["params"]["weight_decay"] = weight_decay;
    system_dict["hyper-parameters"]["optimizer"]["params"]["amsgrad"] = amsgrad;
    system_dict["hyper-parameters"]["optimizer"]["params"]["momentum_decay"] = momentum_decay;
    system_dict["hyper-parameters"]["optimizer"]["params"]["clipnorm"] = clipnorm;
    system_dict["hyper-parameters"]["optimizer"]["params"]["clipvalue"] = clipvalue;
    return system_dict;
def signum(system_dict, learning_rate, momentum=0, weight_decay=0, nesterov=False):
    '''
    Select SIGNUM optimizer
    Args:
        system_dict (dict): System dictionary storing experiment state and set variables
        learning_rate (float): Initial base learning rate
        momentum (float): Momentum value for driving the weights towards minima
        weight_decay (float): Value for regularizing weights post every update
    Returns:
        dict: updated system dict
    '''
    system_dict["local"]["optimizer"] = "signum";
    system_dict["hyper-parameters"]["learning_rate"] = learning_rate;
    system_dict["hyper-parameters"]["optimizer"]["name"] = "signum";
    system_dict["hyper-parameters"]["optimizer"]["params"]["lr"] = learning_rate;
    system_dict["hyper-parameters"]["optimizer"]["params"]["weight_decay"] = weight_decay;
    system_dict["hyper-parameters"]["optimizer"]["params"]["momentum"] = momentum;
    return system_dict;
def ftml(system_dict, learning_rate, betas=(0.9, 0.999), epsilon=1e-08, weight_decay=0, amsgrad=False):
    '''
    Inactive function
    '''
    system_dict["local"]["optimizer"] = "ftml";
    system_dict["hyper-parameters"]["learning_rate"] = learning_rate;
    system_dict["hyper-parameters"]["optimizer"]["name"] = "ftml";
    system_dict["hyper-parameters"]["optimizer"]["params"]["lr"] = learning_rate;
    system_dict["hyper-parameters"]["optimizer"]["params"]["betas"] = betas;
    system_dict["hyper-parameters"]["optimizer"]["params"]["eps"] = epsilon;
    system_dict["hyper-parameters"]["optimizer"]["params"]["weight_decay"] = weight_decay;
    system_dict["hyper-parameters"]["optimizer"]["params"]["amsgrad"] = amsgrad;
    return system_dict;Functions
- def adadelta(system_dict, learning_rate, rho=0.9, epsilon=1e-06, weight_decay=0, clipnorm=0.0, clipvalue=0.0)
- 
Select Adadelta optimizer Args- system_dict:- dict
- System dictionary storing experiment state and set variables
- learning_rate:- float
- Initial base learning rate
- rho:- float
- Exponential decay rate for momentum estimates
- weight_decay:- float
- Value for regularizing weights post every update
- epsilon:- float
- A value to avoid division by zero
- clipnorm:- float
- Gradient clipping factor
- clipvalue:- float
- Value for clipping
 Returns- dict
- updated system dict
 Expand source codedef adadelta(system_dict, learning_rate, rho=0.9, epsilon=1e-06, weight_decay=0, clipnorm=0.0, clipvalue=0.0): ''' Select Adadelta optimizer Args: system_dict (dict): System dictionary storing experiment state and set variables learning_rate (float): Initial base learning rate rho (float): Exponential decay rate for momentum estimates weight_decay (float): Value for regularizing weights post every update epsilon (float): A value to avoid division by zero clipnorm (float): Gradient clipping factor clipvalue (float): Value for clipping Returns: dict: updated system dict ''' system_dict["local"]["optimizer"] = "adadelta"; system_dict["hyper-parameters"]["learning_rate"] = learning_rate; system_dict["hyper-parameters"]["optimizer"]["name"] = "adadelta"; system_dict["hyper-parameters"]["optimizer"]["params"]["lr"] = learning_rate; system_dict["hyper-parameters"]["optimizer"]["params"]["rho"] = rho; system_dict["hyper-parameters"]["optimizer"]["params"]["epsilon"] = epsilon; system_dict["hyper-parameters"]["optimizer"]["params"]["weight_decay"] = weight_decay; system_dict["hyper-parameters"]["optimizer"]["params"]["clipnorm"] = clipnorm; system_dict["hyper-parameters"]["optimizer"]["params"]["clipvalue"] = clipvalue; return system_dict;
- def adagrad(system_dict, learning_rate, learning_rate_decay=0, weight_decay=0, epsilon=0, clipnorm=0.0, clipvalue=0.0)
- 
Select Adagrad optimizer Args- system_dict:- dict
- System dictionary storing experiment state and set variables
- learning_rate:- float
- Initial base learning rate
- learning_rate_decay:- float
- Learning rate decay factor
- weight_decay:- float
- Value for regularizing weights post every update
- epsilon:- float
- A value to avoid division by zero
- clipnorm:- float
- Gradient clipping factor
- clipvalue:- float
- Value for clipping
 Returns- dict
- updated system dict
 Expand source codedef adagrad(system_dict, learning_rate, learning_rate_decay=0, weight_decay=0, epsilon=0, clipnorm=0.0, clipvalue=0.0): ''' Select Adagrad optimizer Args: system_dict (dict): System dictionary storing experiment state and set variables learning_rate (float): Initial base learning rate learning_rate_decay (float): Learning rate decay factor weight_decay (float): Value for regularizing weights post every update epsilon (float): A value to avoid division by zero clipnorm (float): Gradient clipping factor clipvalue (float): Value for clipping Returns: dict: updated system dict ''' system_dict["local"]["optimizer"] = "adagrad"; system_dict["hyper-parameters"]["learning_rate"] = learning_rate; system_dict["hyper-parameters"]["optimizer"]["name"] = "adagrad"; system_dict["hyper-parameters"]["optimizer"]["params"]["lr"] = learning_rate; system_dict["hyper-parameters"]["optimizer"]["params"]["lr_decay"] = learning_rate_decay; system_dict["hyper-parameters"]["optimizer"]["params"]["epsilon"] = epsilon; system_dict["hyper-parameters"]["optimizer"]["params"]["weight_decay"] = weight_decay; system_dict["hyper-parameters"]["optimizer"]["params"]["clipnorm"] = clipnorm; system_dict["hyper-parameters"]["optimizer"]["params"]["clipvalue"] = clipvalue; return system_dict;
- def adam(system_dict, learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-08, weight_decay=0, amsgrad=False, clipnorm=0.0, clipvalue=0.0)
- 
Select ADAM optimizer Args- system_dict:- dict
- System dictionary storing experiment state and set variables
- learning_rate:- float
- Initial base learning rate
- beta1:- float
- Exponential decay rate for first momentum estimates
- beta2:- float
- Exponential decay rate for first second estimates
- weight_decay:- float
- Value for regularizing weights post every update
- amsgrad:- bool
- If True, AMSGrad variant of this algorithm is used
- epsilon:- float
- A value to avoid division by zero
- clipnorm:- float
- Gradient clipping factor
- clipvalue:- float
- Value for clipping
 Returns- dict
- updated system dict
 Expand source codedef adam(system_dict, learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-08, weight_decay=0, amsgrad=False, clipnorm=0.0, clipvalue=0.0): ''' Select ADAM optimizer Args: system_dict (dict): System dictionary storing experiment state and set variables learning_rate (float): Initial base learning rate beta1 (float): Exponential decay rate for first momentum estimates beta2 (float): Exponential decay rate for first second estimates weight_decay (float): Value for regularizing weights post every update amsgrad (bool): If True, AMSGrad variant of this algorithm is used epsilon (float): A value to avoid division by zero clipnorm (float): Gradient clipping factor clipvalue (float): Value for clipping Returns: dict: updated system dict ''' system_dict["local"]["optimizer"] = "adam"; system_dict["hyper-parameters"]["learning_rate"] = learning_rate; system_dict["hyper-parameters"]["optimizer"]["name"] = "adam"; system_dict["hyper-parameters"]["optimizer"]["params"]["lr"] = learning_rate; system_dict["hyper-parameters"]["optimizer"]["params"]["beta1"] = beta1; system_dict["hyper-parameters"]["optimizer"]["params"]["beta2"] = beta2; system_dict["hyper-parameters"]["optimizer"]["params"]["epsilon"] = epsilon; system_dict["hyper-parameters"]["optimizer"]["params"]["weight_decay"] = weight_decay; system_dict["hyper-parameters"]["optimizer"]["params"]["amsgrad"] = amsgrad; system_dict["hyper-parameters"]["optimizer"]["params"]["clipnorm"] = clipnorm; system_dict["hyper-parameters"]["optimizer"]["params"]["clipvalue"] = clipvalue; return system_dict;
- def adamax(system_dict, learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-08, weight_decay=0, clipnorm=0.0, clipvalue=0.0)
- 
Select Adamax optimizer Args- system_dict:- dict
- System dictionary storing experiment state and set variables
- learning_rate:- float
- Initial base learning rate
- beta1:- float
- Exponential decay rate for first momentum estimates
- beta2:- float
- Exponential decay rate for first second estimates
- weight_decay:- float
- Value for regularizing weights post every update
- epsilon:- float
- A value to avoid division by zero
- clipnorm:- float
- Gradient clipping factor
- clipvalue:- float
- Value for clipping
 Returns- dict
- updated system dict
 Expand source codedef adamax(system_dict, learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-08, weight_decay=0, clipnorm=0.0, clipvalue=0.0): ''' Select Adamax optimizer Args: system_dict (dict): System dictionary storing experiment state and set variables learning_rate (float): Initial base learning rate beta1 (float): Exponential decay rate for first momentum estimates beta2 (float): Exponential decay rate for first second estimates weight_decay (float): Value for regularizing weights post every update epsilon (float): A value to avoid division by zero clipnorm (float): Gradient clipping factor clipvalue (float): Value for clipping Returns: dict: updated system dict ''' system_dict["local"]["optimizer"] = "adamax"; system_dict["hyper-parameters"]["learning_rate"] = learning_rate; system_dict["hyper-parameters"]["optimizer"]["name"] = "adamax"; system_dict["hyper-parameters"]["optimizer"]["params"]["lr"] = learning_rate; system_dict["hyper-parameters"]["optimizer"]["params"]["beta1"] = beta1; system_dict["hyper-parameters"]["optimizer"]["params"]["beta2"] = beta2; system_dict["hyper-parameters"]["optimizer"]["params"]["epsilon"] = epsilon; system_dict["hyper-parameters"]["optimizer"]["params"]["weight_decay"] = weight_decay; system_dict["hyper-parameters"]["optimizer"]["params"]["clipnorm"] = clipnorm; system_dict["hyper-parameters"]["optimizer"]["params"]["clipvalue"] = clipvalue; return system_dict;
- def ftml(system_dict, learning_rate, betas=(0.9, 0.999), epsilon=1e-08, weight_decay=0, amsgrad=False)
- 
Inactive function Expand source codedef ftml(system_dict, learning_rate, betas=(0.9, 0.999), epsilon=1e-08, weight_decay=0, amsgrad=False): ''' Inactive function ''' system_dict["local"]["optimizer"] = "ftml"; system_dict["hyper-parameters"]["learning_rate"] = learning_rate; system_dict["hyper-parameters"]["optimizer"]["name"] = "ftml"; system_dict["hyper-parameters"]["optimizer"]["params"]["lr"] = learning_rate; system_dict["hyper-parameters"]["optimizer"]["params"]["betas"] = betas; system_dict["hyper-parameters"]["optimizer"]["params"]["eps"] = epsilon; system_dict["hyper-parameters"]["optimizer"]["params"]["weight_decay"] = weight_decay; system_dict["hyper-parameters"]["optimizer"]["params"]["amsgrad"] = amsgrad; return system_dict;
- def momentum_rmsprop(system_dict, learning_rate, decay_rate=0.99, epsilon=1e-08, weight_decay=0, momentum=0.9)
- 
Select root mean score prop optimizer with momentum Args- system_dict:- dict
- System dictionary storing experiment state and set variables
- learning_rate:- float
- Initial base learning rate
- decay_rate:- float
- A decay factor of moving average over past squared gradient.
- epsilon:- float
- A value to avoid division by zero
- weight_decay:- float
- Value for regularizing weights post every update
- momentum:- float
- Momentum value for driving the weights towards minima
- clipnorm:- float
- Gradient clipping factor
- clipvalue:- float
- Value for clipping
 Returns- dict
- updated system dict
 Expand source codedef momentum_rmsprop(system_dict, learning_rate, decay_rate=0.99, epsilon=1e-08, weight_decay=0, momentum=0.9): ''' Select root mean score prop optimizer with momentum Args: system_dict (dict): System dictionary storing experiment state and set variables learning_rate (float): Initial base learning rate decay_rate (float): A decay factor of moving average over past squared gradient. epsilon (float): A value to avoid division by zero weight_decay (float): Value for regularizing weights post every update momentum (float): Momentum value for driving the weights towards minima clipnorm (float): Gradient clipping factor clipvalue (float): Value for clipping Returns: dict: updated system dict ''' system_dict["local"]["optimizer"] = "rmsprop"; system_dict["hyper-parameters"]["learning_rate"] = learning_rate; system_dict["hyper-parameters"]["optimizer"]["name"] = "rmsprop"; system_dict["hyper-parameters"]["optimizer"]["params"]["lr"] = learning_rate; system_dict["hyper-parameters"]["optimizer"]["params"]["epsilon"] = epsilon; system_dict["hyper-parameters"]["optimizer"]["params"]["decay_rate"] = decay_rate; system_dict["hyper-parameters"]["optimizer"]["params"]["weight_decay"] = weight_decay; system_dict["hyper-parameters"]["optimizer"]["params"]["momentum"] = momentum; return system_dict;
- def nesterov_adam(system_dict, learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-08, weight_decay=0, amsgrad=False, momentum_decay=0.004, clipnorm=0.0, clipvalue=0.0)
- 
Select ADAM optimizer with nesterov momentum acceleration Args- system_dict:- dict
- System dictionary storing experiment state and set variables
- learning_rate:- float
- Initial base learning rate
- beta1:- float
- Exponential decay rate for first momentum estimates
- beta2:- float
- Exponential decay rate for first second estimates
- weight_decay:- float
- Value for regularizing weights post every update
- amsgrad:- bool
- If True, AMSGrad variant of this algorithm is used
- epsilon:- float
- A value to avoid division by zero
- clipnorm:- float
- Gradient clipping factor
- clipvalue:- float
- Value for clipping
 Returns- dict
- updated system dict
 Expand source codedef nesterov_adam(system_dict, learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-08, weight_decay=0, amsgrad=False, momentum_decay=0.004, clipnorm=0.0, clipvalue=0.0): ''' Select ADAM optimizer with nesterov momentum acceleration Args: system_dict (dict): System dictionary storing experiment state and set variables learning_rate (float): Initial base learning rate beta1 (float): Exponential decay rate for first momentum estimates beta2 (float): Exponential decay rate for first second estimates weight_decay (float): Value for regularizing weights post every update amsgrad (bool): If True, AMSGrad variant of this algorithm is used epsilon (float): A value to avoid division by zero clipnorm (float): Gradient clipping factor clipvalue (float): Value for clipping Returns: dict: updated system dict ''' system_dict["local"]["optimizer"] = "nadam"; system_dict["hyper-parameters"]["learning_rate"] = learning_rate; system_dict["hyper-parameters"]["optimizer"]["name"] = "nadam"; system_dict["hyper-parameters"]["optimizer"]["params"]["lr"] = learning_rate; system_dict["hyper-parameters"]["optimizer"]["params"]["beta1"] = beta1; system_dict["hyper-parameters"]["optimizer"]["params"]["beta2"] = beta2; system_dict["hyper-parameters"]["optimizer"]["params"]["epsilon"] = epsilon; system_dict["hyper-parameters"]["optimizer"]["params"]["weight_decay"] = weight_decay; system_dict["hyper-parameters"]["optimizer"]["params"]["amsgrad"] = amsgrad; system_dict["hyper-parameters"]["optimizer"]["params"]["momentum_decay"] = momentum_decay; system_dict["hyper-parameters"]["optimizer"]["params"]["clipnorm"] = clipnorm; system_dict["hyper-parameters"]["optimizer"]["params"]["clipvalue"] = clipvalue; return system_dict;
- def nesterov_sgd(system_dict, learning_rate, momentum=0, weight_decay=0, momentum_dampening_rate=0, clipnorm=0.0, clipvalue=0.0)
- 
Select stochastic gradient descent optimizer with nesterov acceleration Args- system_dict:- dict
- System dictionary storing experiment state and set variables
- learning_rate:- float
- Initial base learning rate
- momentum:- float
- Momentum value for driving the weights towards minima
- weight_decay:- float
- Value for regularizing weights post every update
- momentum_dampening_rate:- float
- Reduction rate for momentum
- clipnorm:- float
- Gradient clipping factor
- clipvalue:- float
- Value for clipping
 Returns- dict
- updated system dict
 Expand source codedef nesterov_sgd(system_dict, learning_rate, momentum=0, weight_decay=0, momentum_dampening_rate=0, clipnorm=0.0, clipvalue=0.0): ''' Select stochastic gradient descent optimizer with nesterov acceleration Args: system_dict (dict): System dictionary storing experiment state and set variables learning_rate (float): Initial base learning rate momentum (float): Momentum value for driving the weights towards minima weight_decay (float): Value for regularizing weights post every update momentum_dampening_rate (float): Reduction rate for momentum clipnorm (float): Gradient clipping factor clipvalue (float): Value for clipping Returns: dict: updated system dict ''' system_dict["local"]["optimizer"] = "nesterov_sgd"; system_dict["hyper-parameters"]["learning_rate"] = learning_rate; system_dict["hyper-parameters"]["optimizer"]["name"] = "nesterov_sgd"; system_dict["hyper-parameters"]["optimizer"]["params"]["lr"] = learning_rate; system_dict["hyper-parameters"]["optimizer"]["params"]["momentum"] = momentum; system_dict["hyper-parameters"]["optimizer"]["params"]["weight_decay"] = weight_decay; system_dict["hyper-parameters"]["optimizer"]["params"]["momentum_dampening_rate"] = momentum_dampening_rate; system_dict["hyper-parameters"]["optimizer"]["params"]["clipnorm"] = clipnorm; system_dict["hyper-parameters"]["optimizer"]["params"]["clipvalue"] = clipvalue; return system_dict;
- def rmsprop(system_dict, learning_rate, decay_rate=0.99, epsilon=1e-08, weight_decay=0, clipnorm=0.0, clipvalue=0.0)
- 
Select root mean score prop optimizer Args- system_dict:- dict
- System dictionary storing experiment state and set variables
- learning_rate:- float
- Initial base learning rate
- decay_rate:- float
- A decay factor of moving average over past squared gradient.
- epsilon:- float
- A value to avoid division by zero
- weight_decay:- float
- Value for regularizing weights post every update
- clipnorm:- float
- Gradient clipping factor
- clipvalue:- float
- Value for clipping
 Returns- dict
- updated system dict
 Expand source codedef rmsprop(system_dict, learning_rate, decay_rate=0.99, epsilon=1e-08, weight_decay=0, clipnorm=0.0, clipvalue=0.0): ''' Select root mean score prop optimizer Args: system_dict (dict): System dictionary storing experiment state and set variables learning_rate (float): Initial base learning rate decay_rate (float): A decay factor of moving average over past squared gradient. epsilon (float): A value to avoid division by zero weight_decay (float): Value for regularizing weights post every update clipnorm (float): Gradient clipping factor clipvalue (float): Value for clipping Returns: dict: updated system dict ''' system_dict["local"]["optimizer"] = "rmsprop"; system_dict["hyper-parameters"]["learning_rate"] = learning_rate; system_dict["hyper-parameters"]["optimizer"]["name"] = "rmsprop"; system_dict["hyper-parameters"]["optimizer"]["params"]["lr"] = learning_rate; system_dict["hyper-parameters"]["optimizer"]["params"]["epsilon"] = epsilon; system_dict["hyper-parameters"]["optimizer"]["params"]["decay_rate"] = decay_rate; system_dict["hyper-parameters"]["optimizer"]["params"]["weight_decay"] = weight_decay; system_dict["hyper-parameters"]["optimizer"]["params"]["clipnorm"] = clipnorm; system_dict["hyper-parameters"]["optimizer"]["params"]["clipvalue"] = clipvalue; return system_dict;
- def sgd(system_dict, learning_rate, momentum=0, weight_decay=0, momentum_dampening_rate=0, clipnorm=0.0, clipvalue=0.0)
- 
Select stochastic gradient descent optimizer Args- system_dict:- dict
- System dictionary storing experiment state and set variables
- learning_rate:- float
- Initial base learning rate
- momentum:- float
- Momentum value for driving the weights towards minima
- weight_decay:- float
- Value for regularizing weights post every update
- momentum_dampening_rate:- float
- Reduction rate for momentum
- clipnorm:- float
- Gradient clipping factor
- clipvalue:- float
- Value for clipping
 Returns- dict
- updated system dict
 Expand source codedef sgd(system_dict, learning_rate, momentum=0, weight_decay=0, momentum_dampening_rate=0, clipnorm=0.0, clipvalue=0.0): ''' Select stochastic gradient descent optimizer Args: system_dict (dict): System dictionary storing experiment state and set variables learning_rate (float): Initial base learning rate momentum (float): Momentum value for driving the weights towards minima weight_decay (float): Value for regularizing weights post every update momentum_dampening_rate (float): Reduction rate for momentum clipnorm (float): Gradient clipping factor clipvalue (float): Value for clipping Returns: dict: updated system dict ''' system_dict["local"]["optimizer"] = "sgd"; system_dict["hyper-parameters"]["learning_rate"] = learning_rate; system_dict["hyper-parameters"]["optimizer"]["name"] = "sgd"; system_dict["hyper-parameters"]["optimizer"]["params"]["lr"] = learning_rate; system_dict["hyper-parameters"]["optimizer"]["params"]["momentum"] = momentum; system_dict["hyper-parameters"]["optimizer"]["params"]["weight_decay"] = weight_decay; system_dict["hyper-parameters"]["optimizer"]["params"]["momentum_dampening_rate"] = momentum_dampening_rate; system_dict["hyper-parameters"]["optimizer"]["params"]["clipnorm"] = clipnorm; system_dict["hyper-parameters"]["optimizer"]["params"]["clipvalue"] = clipvalue; return system_dict;
- def signum(system_dict, learning_rate, momentum=0, weight_decay=0, nesterov=False)
- 
Select SIGNUM optimizer Args- system_dict:- dict
- System dictionary storing experiment state and set variables
- learning_rate:- float
- Initial base learning rate
- momentum:- float
- Momentum value for driving the weights towards minima
- weight_decay:- float
- Value for regularizing weights post every update
 Returns- dict
- updated system dict
 Expand source codedef signum(system_dict, learning_rate, momentum=0, weight_decay=0, nesterov=False): ''' Select SIGNUM optimizer Args: system_dict (dict): System dictionary storing experiment state and set variables learning_rate (float): Initial base learning rate momentum (float): Momentum value for driving the weights towards minima weight_decay (float): Value for regularizing weights post every update Returns: dict: updated system dict ''' system_dict["local"]["optimizer"] = "signum"; system_dict["hyper-parameters"]["learning_rate"] = learning_rate; system_dict["hyper-parameters"]["optimizer"]["name"] = "signum"; system_dict["hyper-parameters"]["optimizer"]["params"]["lr"] = learning_rate; system_dict["hyper-parameters"]["optimizer"]["params"]["weight_decay"] = weight_decay; system_dict["hyper-parameters"]["optimizer"]["params"]["momentum"] = momentum; return system_dict;