Module monk.gluon.models.return_model
Expand source code
from gluon.models.imports import *
from system.imports import *
from gluon.models.models import *
from gluon.models.common import create_final_layer
from gluon.models.common import get_layer_uid
from gluon.models.layers import custom_model_get_layer
from gluon.models.layers import addBlock
from gluon.models.initializers import initialize_network
def load_model(system_dict, path=False, final=False, resume=False, external_path=False):
'''
Load model based on the system state
Args:
system_dict (dict): System Dictionary
path (str): Path to final or best model weights if Final flag is set
final (bool): If True, Load model generated from latest epoch training
resume (bool): If True, load model from last checkpoint to resume training
external_path (str): Path to custom model weights
Returns:
network: Neural network loaded with weights.
'''
if(final):
if(path):
with warnings.catch_warnings():
warnings.simplefilter("ignore");
finetune_net = mx.gluon.SymbolBlock.imports(path + 'final-symbol.json', ['data'], path + 'final-0000.params');
else:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
finetune_net = mx.gluon.SymbolBlock.imports(system_dict["model_dir_relative"] + 'final-symbol.json', ['data'], system_dict["model_dir_relative"] + 'final-0000.params');
if(resume):
with warnings.catch_warnings():
warnings.simplefilter("ignore");
finetune_net = mx.gluon.SymbolBlock.imports(system_dict["model_dir_relative"] + 'resume_state-symbol.json', ['data'], system_dict["model_dir_relative"] + 'resume_state-0000.params');
if(external_path):
with warnings.catch_warnings():
warnings.simplefilter("ignore");
finetune_net = mx.gluon.SymbolBlock.imports(external_path[0], ['data'], external_path[1]);
return finetune_net;
def setup_model(system_dict):
'''
Setup model based on the system state and parameters
Args:
system_dict (dict): System Dictionary
Returns:
dict: Updated system dictionary
'''
if(system_dict["model"]["type"] == "pretrained"):
model_name = system_dict["model"]["params"]["model_name"];
use_pretrained = system_dict["model"]["params"]["use_pretrained"];
freeze_base_network = system_dict["model"]["params"]["freeze_base_network"];
custom_network = system_dict["model"]["custom_network"];
final_layer = system_dict["model"]["final_layer"];
num_classes = system_dict["dataset"]["params"]["num_classes"];
finetune_net, model_name = get_base_model(model_name, use_pretrained, num_classes, freeze_base_network);
if(len(custom_network)):
if(final_layer):
if(model_name in set1):
finetune_net = create_final_layer(finetune_net, custom_network, num_classes, set=1);
elif(model_name in set2):
finetune_net = create_final_layer(finetune_net, custom_network, num_classes, set=2);
elif(model_name in set3):
finetune_net = create_final_layer(finetune_net, custom_network, num_classes, set=3);
else:
print("Final layer not assigned");
return 0;
else:
if(model_name in set1):
with finetune_net.name_scope():
finetune_net.output = nn.Dense(num_classes, weight_initializer=init.Xavier());
finetune_net.output.initialize(init.Xavier(), ctx = ctx);
elif(model_name in set2):
net = nn.HybridSequential();
with net.name_scope():
net.add(nn.Conv2D(num_classes, kernel_size=(1, 1), strides=(1, 1), weight_initializer=init.Xavier()));
net.add(nn.Flatten());
with finetune_net.name_scope():
finetune_net.output = net;
finetune_net.output.initialize(init.Xavier(), ctx = ctx)
elif(model_name in set3):
with finetune_net.name_scope():
finetune_net.fc = nn.Dense(num_classes, weight_initializer=init.Xavier());
finetune_net.fc.initialize(init.Xavier(), ctx = ctx)
if(not use_pretrained):
finetune_net.initialize(init.Xavier(), ctx = ctx)
system_dict["local"]["model"] = finetune_net;
return system_dict;
else:
net = create_network(system_dict["custom_model"]["network_stack"]);
net = initialize_network(net, system_dict["custom_model"]["network_initializer"]);
system_dict["local"]["model"] = net;
return system_dict;
def create_block(network_stack, count, G, sequential_first, position, current_width):
'''
Recursively create sub-blocks when designing custom networks
Args:
network_stack (list): List of lists containing information on layers for the sub-branch in the network
count (dict): A dictionary mapping to a count of every type of layer in the network
G (directed graph): NetworkX object
sequential_first (str): NAme of the current input layer
position (int): Vertical position on the directed graph
current_width (int): Horizontal position on the directed graph
Returns:
neural network: The required sub-branch
directed graph: Updated directed graph
str: Name of the outermost layer in the sub-network
int: Vertical position of the outer most layer in the sub-network
int: Horizontal position of the outer most layer in the sub-network
'''
position += 1;
max_width = current_width
net = nn.HybridSequential();
for i in range(len(network_stack)):
if(type(network_stack[i]) == list):
is_block = True;
if(type(network_stack[i][-1]) != list):
if(network_stack[i][-1]["name"] in ["add", "concatenate"]):
is_block=False;
if(is_block):
block, G, count, sequential_second, position, _ = create_block(network_stack[i], count,
G, sequential_first, position, current_width)
sequential_first = sequential_second
net.add(block)
else:
branch_end_points = [];
branch_max_length = 0;
branches = [];
branch_net = [];
#if(max_width < len(network_stack[i])-2):
# max_width = len(network_stack[i])-2;
max_width = current_width;
width = current_width;
for j in range(len(network_stack[i])-1):
small_net = [];
branch_net.append(nn.HybridSequential())
branch_first = sequential_first
branch_position = position
column = max((j+1)*2+current_width, width);
max_width = column
for k in range(len(network_stack[i][j])):
if type(network_stack[i][j][k]) == list:
is_block2 = True;
if(type(network_stack[i][j][k][-1]) != list):
if(network_stack[i][j][k][-1]["name"] in ["add", "concatenate"]):
is_block2=False;
if(is_block2):
block, G, count, branch_second, branch_position, width = create_block(network_stack[i][j][k],
count,
G,
branch_first,
branch_position,
column-2) #j+k+width
else:
block, G, count, branch_second, branch_position, width = create_block([network_stack[i][j][k]],
count,
G,
branch_first,
branch_position,
column-2) #j+k+width
branch_first = branch_second
small_net.append(block);
branch_net[j].add(block);
else:
branch_second, count = get_layer_uid(network_stack[i][j][k], count);
small_net.append(custom_model_get_layer(network_stack[i][j][k]));
branch_net[j].add(custom_model_get_layer(network_stack[i][j][k]));
G.add_node(branch_second, pos=(column, branch_position));
branch_position += 1;
G.add_edge(branch_first, branch_second);
branch_first = branch_second;
branch_max_length = max(branch_position, branch_max_length)
if(k == len(network_stack[i][j])-1):
branch_end_points.append(branch_second);
branches.append(small_net);
position = branch_max_length;
position += 1;
max_width += 2;
sequential_second, count = get_layer_uid(network_stack[i][-1], count);
if(network_stack[i][-1]["name"] == "concatenate"):
subnetwork = contrib_nn.HybridConcurrent(axis=1);
for j in range(len(network_stack[i])-1):
subnetwork.add(branch_net[j]);
else:
subnetwork = addBlock(branches);
G.add_node(sequential_second, pos=(2 + current_width, position));
position += 1;
for i in range(len(branch_end_points)):
G.add_edge(branch_end_points[i], sequential_second);
sequential_first = sequential_second;
net.add(subnetwork)
else:
sequential_second, count = get_layer_uid(network_stack[i], count);
net.add(custom_model_get_layer(network_stack[i]));
G.add_node(sequential_second, pos=(2 + current_width, position))
position += 1;
G.add_edge(sequential_first, sequential_second);
sequential_first = sequential_second;
return net, G, count, sequential_second, position, max_width
def create_network(network_stack):
'''
Main function to create network when designing custom networks
Args:
network_stack (list): List of lists containing information on layers in the network
Returns:
neural network: The required complete network
'''
count = [];
for i in range(len(names)):
count.append(1);
G=nx.DiGraph()
G.add_node("Net", pos=(1,1))
sequential_first = "data";
#sequential_second, count = get_layer_uid(network_stack[0], count);
count = [];
for i in range(len(names)):
count.append(1);
position = 1;
G.add_node(sequential_first, pos=(2,1))
position += 1;
net = nn.HybridSequential();
max_width = 1;
width = 0;
for i in range(len(network_stack)):
if(type(network_stack[i]) == list):
is_block = True;
if(type(network_stack[i][-1]) != list):
if(network_stack[i][-1]["name"] in ["add", "concatenate"]):
is_block=False;
if(is_block):
block, G, count, sequential_second, position, _ = create_block(network_stack[i], count,
G, sequential_first, position, 0)
sequential_first = sequential_second
net.add(block)
else:
branch_end_points = [];
branch_max_length = 0;
branches = [];
branch_net = [];
if(max_width < len(network_stack[i])-2):
max_width = len(network_stack[i])-2;
width = 0;
for j in range(len(network_stack[i])-1):
small_net = [];
branch_first = sequential_first
branch_net.append(nn.HybridSequential())
branch_position = position
if(width > 0):
if(column == width):
column += 2;
else:
column = width;
else:
column = (j+1)*2;
for k in range(len(network_stack[i][j])):
if type(network_stack[i][j][k]) == list:
is_block2 = True;
if(type(network_stack[i][j][k][-1]) != list):
if(network_stack[i][j][k][-1]["name"] in ["add", "concatenate"]):
is_block2=False;
if(is_block2):
block, G, count, branch_second, branch_position, width = create_block(network_stack[i][j][k],
count,
G,
branch_first,
branch_position,
column-2) #j+k+width
else:
block, G, count, branch_second, branch_position, width = create_block([network_stack[i][j][k]],
count,
G,
branch_first,
branch_position,
column-2)
branch_first = branch_second
small_net.append(block);
branch_net[j].add(block);
else:
branch_second, count = get_layer_uid(network_stack[i][j][k], count);
small_net.append(custom_model_get_layer(network_stack[i][j][k]));
branch_net[j].add(custom_model_get_layer(network_stack[i][j][k]));
G.add_node(branch_second, pos=(column, branch_position));
branch_position += 1;
G.add_edge(branch_first, branch_second);
branch_first = branch_second;
branch_max_length = max(branch_position, branch_max_length)
if(k == len(network_stack[i][j])-1):
branch_end_points.append(branch_second);
branches.append(small_net);
position = branch_max_length;
position += 1;
max_width += width
sequential_second, count = get_layer_uid(network_stack[i][-1], count)
if(network_stack[i][-1]["name"] == "concatenate"):
subnetwork = contrib_nn.HybridConcurrent(axis=1);
for j in range(len(network_stack[i])-1):
subnetwork.add(branch_net[j]);
else:
subnetwork = addBlock(branches);
sequential_second, count = get_layer_uid(network_stack[i][-1], count);
G.add_node(sequential_second, pos=(2, position));
position += 1;
for i in range(len(branch_end_points)):
G.add_edge(branch_end_points[i], sequential_second);
sequential_first = sequential_second;
net.add(subnetwork)
else:
sequential_second, count = get_layer_uid(network_stack[i], count);
G.add_node(sequential_second, pos=(2, position))
net.add(custom_model_get_layer(network_stack[i]));
position += 1;
G.add_edge(sequential_first, sequential_second);
sequential_first = sequential_second;
max_width = max(max_width, width);
if(max_width == 1):
G.add_node("monk", pos=(3, position));
else:
G.add_node("monk", pos=(max_width + 3, position))
pos = nx.get_node_attributes(G, 'pos')
plt.figure(3, figsize=(12, 12 + position//6))
nx.draw_networkx(G, pos, with_label=True, font_size=16, node_color="yellow", node_size=100)
plt.savefig("graph.png");
return net;
def debug_create_block(network_stack, count, G, sequential_first, position, current_width):
'''
Recursively visualize sub-blocks when designing custom networks
Args:
network_stack (list): List of lists containing information on layers for the sub-branch in the network
count (dict): A dictionary mapping to a count of every type of layer in the network
G (directed graph): NetworkX object
sequential_first (str): NAme of the current input layer
position (int): Vertical position on the directed graph
current_width (int): Horizontal position on the directed graph
Returns:
neural network: The required sub-branch
directed graph: Updated directed graph
str: Name of the outermost layer in the sub-network
int: Vertical position of the outer most layer in the sub-network
int: Horizontal position of the outer most layer in the sub-network
'''
position += 1;
max_width = current_width
for i in range(len(network_stack)):
if(type(network_stack[i]) == list):
is_block = True;
if(type(network_stack[i][-1]) != list):
if(network_stack[i][-1]["name"] in ["add", "concatenate"]):
is_block=False;
if(is_block):
G, count, sequential_second, position, _ = debug_create_block(network_stack[i], count,
G, sequential_first, position, current_width) #0
sequential_first = sequential_second
else:
branch_end_points = [];
branch_max_length = 0;
branches = [];
branch_net = [];
#if(max_width < len(network_stack[i])-2):
# max_width = len(network_stack[i])-2;
max_width = current_width;
width = current_width;
for j in range(len(network_stack[i])-1):
branch_first = sequential_first
branch_position = position
column = max((j+1)*2+current_width, width);
max_width = column
for k in range(len(network_stack[i][j])):
if type(network_stack[i][j][k]) == list:
is_block2 = True;
if(type(network_stack[i][j][k][-1]) != list):
if(network_stack[i][j][k][-1]["name"] in ["add", "concatenate"]):
is_block2=False;
if(is_block2):
G, count, branch_second, branch_position, width = debug_create_block(network_stack[i][j][k],
count,
G,
branch_first,
branch_position,
column-2) #j+k+width, j*2+current_width
else:
G, count, branch_second, branch_position, width = debug_create_block([network_stack[i][j][k]],
count,
G,
branch_first,
branch_position,
column-2) #j+k+width, j+k+current_width
branch_first = branch_second
else:
branch_second, count = get_layer_uid(network_stack[i][j][k], count);
G.add_node(branch_second, pos=(column, branch_position));
branch_position += 1;
G.add_edge(branch_first, branch_second);
branch_first = branch_second;
branch_max_length = max(branch_position, branch_max_length)
if(k == len(network_stack[i][j])-1):
branch_end_points.append(branch_second);
position = branch_max_length;
position += 1;
max_width += 2;
sequential_second, count = get_layer_uid(network_stack[i][-1], count);
G.add_node(sequential_second, pos=(2 + current_width, position));
position += 1;
for i in range(len(branch_end_points)):
G.add_edge(branch_end_points[i], sequential_second);
sequential_first = sequential_second;
else:
sequential_second, count = get_layer_uid(network_stack[i], count);
G.add_node(sequential_second, pos=(2+current_width, position))
position += 1;
G.add_edge(sequential_first, sequential_second);
sequential_first = sequential_second;
return G, count, sequential_second, position, max_width
def debug_create_network(network_stack):
'''
Main function to visualize network when designing custom networks
Args:
network_stack (list): List of lists containing information on layers in the network
Returns:
neural network: The required complete network
'''
count = [];
for i in range(len(names)):
count.append(1);
G=nx.DiGraph()
G.add_node("Net", pos=(1,1))
sequential_first = "data";
#sequential_second, count = get_layer_uid(network_stack[0], count);
count = [];
for i in range(len(names)):
count.append(1);
position = 1;
G.add_node(sequential_first, pos=(2,1))
position += 1;
max_width = 1;
width = 0;
for i in range(len(network_stack)):
if(type(network_stack[i]) == list):
is_block = True;
if(type(network_stack[i][-1]) != list):
if(network_stack[i][-1]["name"] in ["add", "concatenate"]):
is_block=False;
if(is_block):
G, count, sequential_second, position, _ = debug_create_block(network_stack[i], count,
G, sequential_first, position, 0)
sequential_first = sequential_second
else:
branch_end_points = [];
branch_max_length = 0;
branches = [];
branch_net = [];
if(max_width < len(network_stack[i])-2):
max_width = len(network_stack[i])-2;
width = 0;
for j in range(len(network_stack[i])-1):
branch_first = sequential_first
branch_position = position
if(width > 0):
if(column == width):
column += 2;
else:
column = width;
else:
column = (j+1)*2;
for k in range(len(network_stack[i][j])):
if type(network_stack[i][j][k]) == list:
is_block2 = True;
if(type(network_stack[i][j][k][-1]) != list):
if(network_stack[i][j][k][-1]["name"] in ["add", "concatenate"]):
is_block2=False;
if(is_block2):
G, count, branch_second, branch_position, width = debug_create_block(network_stack[i][j][k],
count,
G,
branch_first,
branch_position,
column-2) #j*2+width
else:
G, count, branch_second, branch_position, width = debug_create_block([network_stack[i][j][k]],
count,
G,
branch_first,
branch_position,
column-2) #j+k+width
branch_first = branch_second
else:
branch_second, count = get_layer_uid(network_stack[i][j][k], count);
G.add_node(branch_second, pos=(column, branch_position));
branch_position += 1;
G.add_edge(branch_first, branch_second);
branch_first = branch_second;
branch_max_length = max(branch_position, branch_max_length)
if(k == len(network_stack[i][j])-1):
branch_end_points.append(branch_second);
position = branch_max_length;
position += 1;
max_width += width
sequential_second, count = get_layer_uid(network_stack[i][-1], count);
G.add_node(sequential_second, pos=(2, position));
position += 1;
for i in range(len(branch_end_points)):
G.add_edge(branch_end_points[i], sequential_second);
sequential_first = sequential_second;
else:
sequential_second, count = get_layer_uid(network_stack[i], count);
G.add_node(sequential_second, pos=(2, position))
position += 1;
G.add_edge(sequential_first, sequential_second);
sequential_first = sequential_second;
max_width = max(max_width, width);
if(max_width == 1):
G.add_node("monk", pos=(3, position));
else:
G.add_node("monk", pos=(max_width + 3, position))
pos = nx.get_node_attributes(G, 'pos')
plt.figure(3, figsize=(16, 20 + position//6))
nx.draw_networkx(G, pos, with_label=True, font_size=16, node_color="yellow", node_size=100)
plt.savefig("graph.png");
Functions
def create_block(network_stack, count, G, sequential_first, position, current_width)
-
Recursively create sub-blocks when designing custom networks
Args
network_stack
:list
- List of lists containing information on layers for the sub-branch in the network
count
:dict
- A dictionary mapping to a count of every type of layer in the network
G
:directed
graph
- NetworkX object
sequential_first
:str
- NAme of the current input layer
position
:int
- Vertical position on the directed graph
current_width
:int
- Horizontal position on the directed graph
Returns
neural
network
:The
required
sub
-branch
directed
graph
:Updated
directed
graph
str
- Name of the outermost layer in the sub-network
int
- Vertical position of the outer most layer in the sub-network
int
- Horizontal position of the outer most layer in the sub-network
Expand source code
def create_block(network_stack, count, G, sequential_first, position, current_width): ''' Recursively create sub-blocks when designing custom networks Args: network_stack (list): List of lists containing information on layers for the sub-branch in the network count (dict): A dictionary mapping to a count of every type of layer in the network G (directed graph): NetworkX object sequential_first (str): NAme of the current input layer position (int): Vertical position on the directed graph current_width (int): Horizontal position on the directed graph Returns: neural network: The required sub-branch directed graph: Updated directed graph str: Name of the outermost layer in the sub-network int: Vertical position of the outer most layer in the sub-network int: Horizontal position of the outer most layer in the sub-network ''' position += 1; max_width = current_width net = nn.HybridSequential(); for i in range(len(network_stack)): if(type(network_stack[i]) == list): is_block = True; if(type(network_stack[i][-1]) != list): if(network_stack[i][-1]["name"] in ["add", "concatenate"]): is_block=False; if(is_block): block, G, count, sequential_second, position, _ = create_block(network_stack[i], count, G, sequential_first, position, current_width) sequential_first = sequential_second net.add(block) else: branch_end_points = []; branch_max_length = 0; branches = []; branch_net = []; #if(max_width < len(network_stack[i])-2): # max_width = len(network_stack[i])-2; max_width = current_width; width = current_width; for j in range(len(network_stack[i])-1): small_net = []; branch_net.append(nn.HybridSequential()) branch_first = sequential_first branch_position = position column = max((j+1)*2+current_width, width); max_width = column for k in range(len(network_stack[i][j])): if type(network_stack[i][j][k]) == list: is_block2 = True; if(type(network_stack[i][j][k][-1]) != list): if(network_stack[i][j][k][-1]["name"] in ["add", "concatenate"]): is_block2=False; if(is_block2): block, G, count, branch_second, branch_position, width = create_block(network_stack[i][j][k], count, G, branch_first, branch_position, column-2) #j+k+width else: block, G, count, branch_second, branch_position, width = create_block([network_stack[i][j][k]], count, G, branch_first, branch_position, column-2) #j+k+width branch_first = branch_second small_net.append(block); branch_net[j].add(block); else: branch_second, count = get_layer_uid(network_stack[i][j][k], count); small_net.append(custom_model_get_layer(network_stack[i][j][k])); branch_net[j].add(custom_model_get_layer(network_stack[i][j][k])); G.add_node(branch_second, pos=(column, branch_position)); branch_position += 1; G.add_edge(branch_first, branch_second); branch_first = branch_second; branch_max_length = max(branch_position, branch_max_length) if(k == len(network_stack[i][j])-1): branch_end_points.append(branch_second); branches.append(small_net); position = branch_max_length; position += 1; max_width += 2; sequential_second, count = get_layer_uid(network_stack[i][-1], count); if(network_stack[i][-1]["name"] == "concatenate"): subnetwork = contrib_nn.HybridConcurrent(axis=1); for j in range(len(network_stack[i])-1): subnetwork.add(branch_net[j]); else: subnetwork = addBlock(branches); G.add_node(sequential_second, pos=(2 + current_width, position)); position += 1; for i in range(len(branch_end_points)): G.add_edge(branch_end_points[i], sequential_second); sequential_first = sequential_second; net.add(subnetwork) else: sequential_second, count = get_layer_uid(network_stack[i], count); net.add(custom_model_get_layer(network_stack[i])); G.add_node(sequential_second, pos=(2 + current_width, position)) position += 1; G.add_edge(sequential_first, sequential_second); sequential_first = sequential_second; return net, G, count, sequential_second, position, max_width
def create_network(network_stack)
-
Main function to create network when designing custom networks
Args
network_stack
:list
- List of lists containing information on layers in the network
Returns
neural
network
:The
required
complete
network
Expand source code
def create_network(network_stack): ''' Main function to create network when designing custom networks Args: network_stack (list): List of lists containing information on layers in the network Returns: neural network: The required complete network ''' count = []; for i in range(len(names)): count.append(1); G=nx.DiGraph() G.add_node("Net", pos=(1,1)) sequential_first = "data"; #sequential_second, count = get_layer_uid(network_stack[0], count); count = []; for i in range(len(names)): count.append(1); position = 1; G.add_node(sequential_first, pos=(2,1)) position += 1; net = nn.HybridSequential(); max_width = 1; width = 0; for i in range(len(network_stack)): if(type(network_stack[i]) == list): is_block = True; if(type(network_stack[i][-1]) != list): if(network_stack[i][-1]["name"] in ["add", "concatenate"]): is_block=False; if(is_block): block, G, count, sequential_second, position, _ = create_block(network_stack[i], count, G, sequential_first, position, 0) sequential_first = sequential_second net.add(block) else: branch_end_points = []; branch_max_length = 0; branches = []; branch_net = []; if(max_width < len(network_stack[i])-2): max_width = len(network_stack[i])-2; width = 0; for j in range(len(network_stack[i])-1): small_net = []; branch_first = sequential_first branch_net.append(nn.HybridSequential()) branch_position = position if(width > 0): if(column == width): column += 2; else: column = width; else: column = (j+1)*2; for k in range(len(network_stack[i][j])): if type(network_stack[i][j][k]) == list: is_block2 = True; if(type(network_stack[i][j][k][-1]) != list): if(network_stack[i][j][k][-1]["name"] in ["add", "concatenate"]): is_block2=False; if(is_block2): block, G, count, branch_second, branch_position, width = create_block(network_stack[i][j][k], count, G, branch_first, branch_position, column-2) #j+k+width else: block, G, count, branch_second, branch_position, width = create_block([network_stack[i][j][k]], count, G, branch_first, branch_position, column-2) branch_first = branch_second small_net.append(block); branch_net[j].add(block); else: branch_second, count = get_layer_uid(network_stack[i][j][k], count); small_net.append(custom_model_get_layer(network_stack[i][j][k])); branch_net[j].add(custom_model_get_layer(network_stack[i][j][k])); G.add_node(branch_second, pos=(column, branch_position)); branch_position += 1; G.add_edge(branch_first, branch_second); branch_first = branch_second; branch_max_length = max(branch_position, branch_max_length) if(k == len(network_stack[i][j])-1): branch_end_points.append(branch_second); branches.append(small_net); position = branch_max_length; position += 1; max_width += width sequential_second, count = get_layer_uid(network_stack[i][-1], count) if(network_stack[i][-1]["name"] == "concatenate"): subnetwork = contrib_nn.HybridConcurrent(axis=1); for j in range(len(network_stack[i])-1): subnetwork.add(branch_net[j]); else: subnetwork = addBlock(branches); sequential_second, count = get_layer_uid(network_stack[i][-1], count); G.add_node(sequential_second, pos=(2, position)); position += 1; for i in range(len(branch_end_points)): G.add_edge(branch_end_points[i], sequential_second); sequential_first = sequential_second; net.add(subnetwork) else: sequential_second, count = get_layer_uid(network_stack[i], count); G.add_node(sequential_second, pos=(2, position)) net.add(custom_model_get_layer(network_stack[i])); position += 1; G.add_edge(sequential_first, sequential_second); sequential_first = sequential_second; max_width = max(max_width, width); if(max_width == 1): G.add_node("monk", pos=(3, position)); else: G.add_node("monk", pos=(max_width + 3, position)) pos = nx.get_node_attributes(G, 'pos') plt.figure(3, figsize=(12, 12 + position//6)) nx.draw_networkx(G, pos, with_label=True, font_size=16, node_color="yellow", node_size=100) plt.savefig("graph.png"); return net;
def debug_create_block(network_stack, count, G, sequential_first, position, current_width)
-
Recursively visualize sub-blocks when designing custom networks
Args
network_stack
:list
- List of lists containing information on layers for the sub-branch in the network
count
:dict
- A dictionary mapping to a count of every type of layer in the network
G
:directed
graph
- NetworkX object
sequential_first
:str
- NAme of the current input layer
position
:int
- Vertical position on the directed graph
current_width
:int
- Horizontal position on the directed graph
Returns
neural
network
:The
required
sub
-branch
directed
graph
:Updated
directed
graph
str
- Name of the outermost layer in the sub-network
int
- Vertical position of the outer most layer in the sub-network
int
- Horizontal position of the outer most layer in the sub-network
Expand source code
def debug_create_block(network_stack, count, G, sequential_first, position, current_width): ''' Recursively visualize sub-blocks when designing custom networks Args: network_stack (list): List of lists containing information on layers for the sub-branch in the network count (dict): A dictionary mapping to a count of every type of layer in the network G (directed graph): NetworkX object sequential_first (str): NAme of the current input layer position (int): Vertical position on the directed graph current_width (int): Horizontal position on the directed graph Returns: neural network: The required sub-branch directed graph: Updated directed graph str: Name of the outermost layer in the sub-network int: Vertical position of the outer most layer in the sub-network int: Horizontal position of the outer most layer in the sub-network ''' position += 1; max_width = current_width for i in range(len(network_stack)): if(type(network_stack[i]) == list): is_block = True; if(type(network_stack[i][-1]) != list): if(network_stack[i][-1]["name"] in ["add", "concatenate"]): is_block=False; if(is_block): G, count, sequential_second, position, _ = debug_create_block(network_stack[i], count, G, sequential_first, position, current_width) #0 sequential_first = sequential_second else: branch_end_points = []; branch_max_length = 0; branches = []; branch_net = []; #if(max_width < len(network_stack[i])-2): # max_width = len(network_stack[i])-2; max_width = current_width; width = current_width; for j in range(len(network_stack[i])-1): branch_first = sequential_first branch_position = position column = max((j+1)*2+current_width, width); max_width = column for k in range(len(network_stack[i][j])): if type(network_stack[i][j][k]) == list: is_block2 = True; if(type(network_stack[i][j][k][-1]) != list): if(network_stack[i][j][k][-1]["name"] in ["add", "concatenate"]): is_block2=False; if(is_block2): G, count, branch_second, branch_position, width = debug_create_block(network_stack[i][j][k], count, G, branch_first, branch_position, column-2) #j+k+width, j*2+current_width else: G, count, branch_second, branch_position, width = debug_create_block([network_stack[i][j][k]], count, G, branch_first, branch_position, column-2) #j+k+width, j+k+current_width branch_first = branch_second else: branch_second, count = get_layer_uid(network_stack[i][j][k], count); G.add_node(branch_second, pos=(column, branch_position)); branch_position += 1; G.add_edge(branch_first, branch_second); branch_first = branch_second; branch_max_length = max(branch_position, branch_max_length) if(k == len(network_stack[i][j])-1): branch_end_points.append(branch_second); position = branch_max_length; position += 1; max_width += 2; sequential_second, count = get_layer_uid(network_stack[i][-1], count); G.add_node(sequential_second, pos=(2 + current_width, position)); position += 1; for i in range(len(branch_end_points)): G.add_edge(branch_end_points[i], sequential_second); sequential_first = sequential_second; else: sequential_second, count = get_layer_uid(network_stack[i], count); G.add_node(sequential_second, pos=(2+current_width, position)) position += 1; G.add_edge(sequential_first, sequential_second); sequential_first = sequential_second; return G, count, sequential_second, position, max_width
def debug_create_network(network_stack)
-
Main function to visualize network when designing custom networks
Args
network_stack
:list
- List of lists containing information on layers in the network
Returns
neural
network
:The
required
complete
network
Expand source code
def debug_create_network(network_stack): ''' Main function to visualize network when designing custom networks Args: network_stack (list): List of lists containing information on layers in the network Returns: neural network: The required complete network ''' count = []; for i in range(len(names)): count.append(1); G=nx.DiGraph() G.add_node("Net", pos=(1,1)) sequential_first = "data"; #sequential_second, count = get_layer_uid(network_stack[0], count); count = []; for i in range(len(names)): count.append(1); position = 1; G.add_node(sequential_first, pos=(2,1)) position += 1; max_width = 1; width = 0; for i in range(len(network_stack)): if(type(network_stack[i]) == list): is_block = True; if(type(network_stack[i][-1]) != list): if(network_stack[i][-1]["name"] in ["add", "concatenate"]): is_block=False; if(is_block): G, count, sequential_second, position, _ = debug_create_block(network_stack[i], count, G, sequential_first, position, 0) sequential_first = sequential_second else: branch_end_points = []; branch_max_length = 0; branches = []; branch_net = []; if(max_width < len(network_stack[i])-2): max_width = len(network_stack[i])-2; width = 0; for j in range(len(network_stack[i])-1): branch_first = sequential_first branch_position = position if(width > 0): if(column == width): column += 2; else: column = width; else: column = (j+1)*2; for k in range(len(network_stack[i][j])): if type(network_stack[i][j][k]) == list: is_block2 = True; if(type(network_stack[i][j][k][-1]) != list): if(network_stack[i][j][k][-1]["name"] in ["add", "concatenate"]): is_block2=False; if(is_block2): G, count, branch_second, branch_position, width = debug_create_block(network_stack[i][j][k], count, G, branch_first, branch_position, column-2) #j*2+width else: G, count, branch_second, branch_position, width = debug_create_block([network_stack[i][j][k]], count, G, branch_first, branch_position, column-2) #j+k+width branch_first = branch_second else: branch_second, count = get_layer_uid(network_stack[i][j][k], count); G.add_node(branch_second, pos=(column, branch_position)); branch_position += 1; G.add_edge(branch_first, branch_second); branch_first = branch_second; branch_max_length = max(branch_position, branch_max_length) if(k == len(network_stack[i][j])-1): branch_end_points.append(branch_second); position = branch_max_length; position += 1; max_width += width sequential_second, count = get_layer_uid(network_stack[i][-1], count); G.add_node(sequential_second, pos=(2, position)); position += 1; for i in range(len(branch_end_points)): G.add_edge(branch_end_points[i], sequential_second); sequential_first = sequential_second; else: sequential_second, count = get_layer_uid(network_stack[i], count); G.add_node(sequential_second, pos=(2, position)) position += 1; G.add_edge(sequential_first, sequential_second); sequential_first = sequential_second; max_width = max(max_width, width); if(max_width == 1): G.add_node("monk", pos=(3, position)); else: G.add_node("monk", pos=(max_width + 3, position)) pos = nx.get_node_attributes(G, 'pos') plt.figure(3, figsize=(16, 20 + position//6)) nx.draw_networkx(G, pos, with_label=True, font_size=16, node_color="yellow", node_size=100) plt.savefig("graph.png");
def load_model(system_dict, path=False, final=False, resume=False, external_path=False)
-
Load model based on the system state
Args
system_dict
:dict
- System Dictionary
path
:str
- Path to final or best model weights if Final flag is set
final
:bool
- If True, Load model generated from latest epoch training
resume
:bool
- If True, load model from last checkpoint to resume training
external_path
:str
- Path to custom model weights
Returns
network
- Neural network loaded with weights.
Expand source code
def load_model(system_dict, path=False, final=False, resume=False, external_path=False): ''' Load model based on the system state Args: system_dict (dict): System Dictionary path (str): Path to final or best model weights if Final flag is set final (bool): If True, Load model generated from latest epoch training resume (bool): If True, load model from last checkpoint to resume training external_path (str): Path to custom model weights Returns: network: Neural network loaded with weights. ''' if(final): if(path): with warnings.catch_warnings(): warnings.simplefilter("ignore"); finetune_net = mx.gluon.SymbolBlock.imports(path + 'final-symbol.json', ['data'], path + 'final-0000.params'); else: with warnings.catch_warnings(): warnings.simplefilter("ignore") finetune_net = mx.gluon.SymbolBlock.imports(system_dict["model_dir_relative"] + 'final-symbol.json', ['data'], system_dict["model_dir_relative"] + 'final-0000.params'); if(resume): with warnings.catch_warnings(): warnings.simplefilter("ignore"); finetune_net = mx.gluon.SymbolBlock.imports(system_dict["model_dir_relative"] + 'resume_state-symbol.json', ['data'], system_dict["model_dir_relative"] + 'resume_state-0000.params'); if(external_path): with warnings.catch_warnings(): warnings.simplefilter("ignore"); finetune_net = mx.gluon.SymbolBlock.imports(external_path[0], ['data'], external_path[1]); return finetune_net;
def setup_model(system_dict)
-
Setup model based on the system state and parameters
Args
system_dict
:dict
- System Dictionary
Returns
dict
- Updated system dictionary
Expand source code
def setup_model(system_dict): ''' Setup model based on the system state and parameters Args: system_dict (dict): System Dictionary Returns: dict: Updated system dictionary ''' if(system_dict["model"]["type"] == "pretrained"): model_name = system_dict["model"]["params"]["model_name"]; use_pretrained = system_dict["model"]["params"]["use_pretrained"]; freeze_base_network = system_dict["model"]["params"]["freeze_base_network"]; custom_network = system_dict["model"]["custom_network"]; final_layer = system_dict["model"]["final_layer"]; num_classes = system_dict["dataset"]["params"]["num_classes"]; finetune_net, model_name = get_base_model(model_name, use_pretrained, num_classes, freeze_base_network); if(len(custom_network)): if(final_layer): if(model_name in set1): finetune_net = create_final_layer(finetune_net, custom_network, num_classes, set=1); elif(model_name in set2): finetune_net = create_final_layer(finetune_net, custom_network, num_classes, set=2); elif(model_name in set3): finetune_net = create_final_layer(finetune_net, custom_network, num_classes, set=3); else: print("Final layer not assigned"); return 0; else: if(model_name in set1): with finetune_net.name_scope(): finetune_net.output = nn.Dense(num_classes, weight_initializer=init.Xavier()); finetune_net.output.initialize(init.Xavier(), ctx = ctx); elif(model_name in set2): net = nn.HybridSequential(); with net.name_scope(): net.add(nn.Conv2D(num_classes, kernel_size=(1, 1), strides=(1, 1), weight_initializer=init.Xavier())); net.add(nn.Flatten()); with finetune_net.name_scope(): finetune_net.output = net; finetune_net.output.initialize(init.Xavier(), ctx = ctx) elif(model_name in set3): with finetune_net.name_scope(): finetune_net.fc = nn.Dense(num_classes, weight_initializer=init.Xavier()); finetune_net.fc.initialize(init.Xavier(), ctx = ctx) if(not use_pretrained): finetune_net.initialize(init.Xavier(), ctx = ctx) system_dict["local"]["model"] = finetune_net; return system_dict; else: net = create_network(system_dict["custom_model"]["network_stack"]); net = initialize_network(net, system_dict["custom_model"]["network_initializer"]); system_dict["local"]["model"] = net; return system_dict;