Module monk.gluon.losses.retrieve_loss
Expand source code
from gluon.losses.imports import *
from system.imports import *
def retrieve_loss(system_dict):
        '''
    Retrieve loss post state changes
    Args:
        system_dict (dict): System dictionary storing experiment state and set variables
    Returns:
        dict: updated system dict
    '''
        system_dict["local"]["criterion"] = system_dict["hyper-parameters"]["loss"]["name"];
        name = system_dict["local"]["criterion"];
        if(name == "l1"):
                system_dict["local"]["criterion"] = mx.gluon.loss.L1Loss(
                        weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"],
                        batch_axis=system_dict["hyper-parameters"]["loss"]["params"]["batch_axis"]);
        elif(name == "l2"):
                system_dict["local"]["criterion"] = mx.gluon.loss.L2Loss(
                        weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"],
                        batch_axis=system_dict["hyper-parameters"]["loss"]["params"]["batch_axis"]);
        elif(name == "softmaxcrossentropy"):
                system_dict["local"]["criterion"] = mx.gluon.loss.SoftmaxCrossEntropyLoss(
                        weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"],
                        batch_axis=system_dict["hyper-parameters"]["loss"]["params"]["batch_axis"],
                        axis=system_dict["hyper-parameters"]["loss"]["params"]["axis_to_sum_over"],
                        sparse_label=system_dict["hyper-parameters"]["loss"]["params"]["label_as_categories"],
                        from_logits=False);
        elif(name == "crossentropy"):
                system_dict["local"]["criterion"] = mx.gluon.loss.SoftmaxCrossEntropyLoss(
                        weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"],
                        batch_axis=system_dict["hyper-parameters"]["loss"]["params"]["batch_axis"],
                        axis=system_dict["hyper-parameters"]["loss"]["params"]["axis_to_sum_over"],
                        sparse_label=system_dict["hyper-parameters"]["loss"]["params"]["label_as_categories"],
                        from_logits=True);
        elif(name == "sigmoidbinarycrossentropy"):
                system_dict["local"]["criterion"] = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss(
                        weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"],
                        batch_axis=system_dict["hyper-parameters"]["loss"]["params"]["batch_axis"],
                        from_sigmoid=False);
        elif(name == "binarycrossentropy"):
                system_dict["local"]["criterion"] = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss(
                        weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"],
                        from_sigmoid=True);
        elif(name == "kldiv"):
                system_dict["local"]["criterion"] = mx.gluon.loss.KLDivLoss(
                        from_logits=system_dict["hyper-parameters"]["loss"]["params"]["log_pre_applied"], 
                        axis=system_dict["hyper-parameters"]["loss"]["params"]["axis_to_sum_over"], 
                        weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"], 
                        batch_axis=system_dict["hyper-parameters"]["loss"]["params"]["batch_axis"]);
        elif(name == "poissonnll"):
                system_dict["local"]["criterion"] = mx.gluon.loss.PoissonNLLLoss(
                        from_logits=system_dict["hyper-parameters"]["loss"]["params"]["log_pre_applied"],
                        weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"],
                        batch_axis=system_dict["hyper-parameters"]["loss"]["params"]["batch_axis"]);
        elif(name == "huber"):
                system_dict["local"]["criterion"] = mx.gluon.loss.HuberLoss(
                        rho=system_dict["hyper-parameters"]["loss"]["params"]["threshold_for_mean_estimator"],
                        weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"],
                        batch_axis=system_dict["hyper-parameters"]["loss"]["params"]["batch_axis"]);
        elif(name == "hinge"):
                system_dict["local"]["criterion"] = mx.gluon.loss.HingeLoss(
                        margin=system_dict["hyper-parameters"]["loss"]["params"]["margin"],
                        weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"],
                        batch_axis=system_dict["hyper-parameters"]["loss"]["params"]["batch_axis"]);
        elif(name == "squaredhinge"):
                system_dict["local"]["criterion"] = mx.gluon.loss.SquaredHingeLoss(
                        margin=system_dict["hyper-parameters"]["loss"]["params"]["margin"],
                        weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"],
                        batch_axis=system_dict["hyper-parameters"]["loss"]["params"]["batch_axis"]);    
        return system_dict;Functions
- def retrieve_loss(system_dict)
- 
Retrieve loss post state changes Args- system_dict:- dict
- System dictionary storing experiment state and set variables
 Returns- dict
- updated system dict
 Expand source codedef retrieve_loss(system_dict): ''' Retrieve loss post state changes Args: system_dict (dict): System dictionary storing experiment state and set variables Returns: dict: updated system dict ''' system_dict["local"]["criterion"] = system_dict["hyper-parameters"]["loss"]["name"]; name = system_dict["local"]["criterion"]; if(name == "l1"): system_dict["local"]["criterion"] = mx.gluon.loss.L1Loss( weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"], batch_axis=system_dict["hyper-parameters"]["loss"]["params"]["batch_axis"]); elif(name == "l2"): system_dict["local"]["criterion"] = mx.gluon.loss.L2Loss( weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"], batch_axis=system_dict["hyper-parameters"]["loss"]["params"]["batch_axis"]); elif(name == "softmaxcrossentropy"): system_dict["local"]["criterion"] = mx.gluon.loss.SoftmaxCrossEntropyLoss( weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"], batch_axis=system_dict["hyper-parameters"]["loss"]["params"]["batch_axis"], axis=system_dict["hyper-parameters"]["loss"]["params"]["axis_to_sum_over"], sparse_label=system_dict["hyper-parameters"]["loss"]["params"]["label_as_categories"], from_logits=False); elif(name == "crossentropy"): system_dict["local"]["criterion"] = mx.gluon.loss.SoftmaxCrossEntropyLoss( weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"], batch_axis=system_dict["hyper-parameters"]["loss"]["params"]["batch_axis"], axis=system_dict["hyper-parameters"]["loss"]["params"]["axis_to_sum_over"], sparse_label=system_dict["hyper-parameters"]["loss"]["params"]["label_as_categories"], from_logits=True); elif(name == "sigmoidbinarycrossentropy"): system_dict["local"]["criterion"] = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss( weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"], batch_axis=system_dict["hyper-parameters"]["loss"]["params"]["batch_axis"], from_sigmoid=False); elif(name == "binarycrossentropy"): system_dict["local"]["criterion"] = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss( weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"], from_sigmoid=True); elif(name == "kldiv"): system_dict["local"]["criterion"] = mx.gluon.loss.KLDivLoss( from_logits=system_dict["hyper-parameters"]["loss"]["params"]["log_pre_applied"], axis=system_dict["hyper-parameters"]["loss"]["params"]["axis_to_sum_over"], weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"], batch_axis=system_dict["hyper-parameters"]["loss"]["params"]["batch_axis"]); elif(name == "poissonnll"): system_dict["local"]["criterion"] = mx.gluon.loss.PoissonNLLLoss( from_logits=system_dict["hyper-parameters"]["loss"]["params"]["log_pre_applied"], weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"], batch_axis=system_dict["hyper-parameters"]["loss"]["params"]["batch_axis"]); elif(name == "huber"): system_dict["local"]["criterion"] = mx.gluon.loss.HuberLoss( rho=system_dict["hyper-parameters"]["loss"]["params"]["threshold_for_mean_estimator"], weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"], batch_axis=system_dict["hyper-parameters"]["loss"]["params"]["batch_axis"]); elif(name == "hinge"): system_dict["local"]["criterion"] = mx.gluon.loss.HingeLoss( margin=system_dict["hyper-parameters"]["loss"]["params"]["margin"], weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"], batch_axis=system_dict["hyper-parameters"]["loss"]["params"]["batch_axis"]); elif(name == "squaredhinge"): system_dict["local"]["criterion"] = mx.gluon.loss.SquaredHingeLoss( margin=system_dict["hyper-parameters"]["loss"]["params"]["margin"], weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"], batch_axis=system_dict["hyper-parameters"]["loss"]["params"]["batch_axis"]); return system_dict;