Module monk.gluon.finetune.level_2_model_base
Expand source code
from gluon.finetune.imports import *
from system.imports import *
from gluon.finetune.level_1_dataset_base import finetune_dataset
class finetune_model(finetune_dataset):
    '''
    Base class for Model setup
    Args:
        verbose (int): Set verbosity levels
                        0 - Print Nothing
                        1 - Print desired details
    '''
    def __init__(self, verbose=1):
        super().__init__(verbose=verbose);
    ###############################################################################################################################################
    def set_model_final(self, path=False):
        '''
        Setup model based on set parameters
        Args:
            path (str): Dummy variable
        Returns:
            None
        '''
        self.custom_print("Model Details");
        if(self.system_dict["model"]["params"]["model_path"]):
            if(os.path.isfile(self.system_dict["model"]["params"]["model_path"][0])):
                self.custom_print("    Loading model - {}".format(self.system_dict["model"]["params"]["model_path"]));
                self.system_dict["local"]["model"] = load_model(self.system_dict, external_path=self.system_dict["model"]["params"]["model_path"]);
                self.system_dict = model_to_device(self.system_dict);
                self.custom_print("    Model loaded!");
                self.custom_print("");
            else:
                msg = "Model not found - {}\n".format(self.system_dict["model"]["params"]["model_path"]);
                msg += "Previous Training Incomplete.";
                raise ConstraintError(msg);
        elif(self.system_dict["states"]["copy_from"]):
            model_path = self.system_dict["master_systems_dir_relative"] + self.system_dict["origin"][0] + "/" + self.system_dict["origin"][1] + "/output/models/";
            if(os.path.isfile(model_path + 'final-symbol.json')):
                self.custom_print("    Loading model - {}".format(model_path + 'final-symbol.json'));
                self.system_dict["local"]["model"] = load_model(self.system_dict, path=model_path, final=True);
                self.system_dict = model_to_device(self.system_dict);
                self.custom_print("    Model loaded!");
                self.custom_print("");
            else:
                msg = "Model not found - {}\n".format(model_path);
                msg += "Previous Training Incomplete.";
                raise ConstraintError(msg);
        elif(self.system_dict["states"]["eval_infer"]):
            if(os.path.isfile(self.system_dict["model_dir_relative"] + 'final-symbol.json')):
                self.custom_print("    Loading model - {}".format(self.system_dict["model_dir_relative"] + 'final-symbol.json'));
                self.system_dict["local"]["model"] = load_model(self.system_dict, final=True);
                self.system_dict = model_to_device(self.system_dict);
                self.custom_print("    Model loaded!");
                self.custom_print("");
            else:
                msg = "Model not found - {}\n".format(self.system_dict["model_dir_relative"] + 'final-symbol.json');
                msg += "Previous Training Incomplete.";
                raise ConstraintError(msg);
        else:
            if(self.system_dict["states"]["resume_train"]):
                if(os.path.isfile(self.system_dict["model_dir_relative"] + 'resume_state-symbol.json')):
                    self.custom_print("    Loading model - {}".format(self.system_dict["model_dir_relative"] + 'resume_state-symbol.json'));
                    self.system_dict["local"]["model"] = load_model(self.system_dict, resume=True);
                else:
                    msg = "Model not found - \"{}\"\n".format(self.system_dict["model_dir_relative"] + 'resume_state-symbol.json');
                    msg += "Training not started. Cannot Run resume Mode";
                    raise ConstraintError(msg);
            else:
                self.custom_print("    Loading pretrained model");
                self.system_dict = setup_model(self.system_dict);
                
            
            self.system_dict = model_to_device(self.system_dict);
            self.custom_print("    Model Loaded on device");
            
            self.system_dict = get_num_layers(self.system_dict);
            if(not self.system_dict["states"]["resume_train"]):
                if(self.system_dict["model"]["type"] == "pretrained"):
                    current_name = "";
                    ip = 0;
                    self.system_dict["local"]["params_to_update"] = [];
                    complete_list = [];
                    for param in self.system_dict["local"]["model"].collect_params().values():
                        if(ip==0):
                            current_name = '_'.join(param.name.split("_")[:-1]);
                            if("running" in current_name):
                                current_name = '_'.join(current_name.split("_")[:-1]);
                            if(param.grad_req == "write"):
                                if(current_name not in complete_list):
                                    complete_list.append(current_name);
                                self.system_dict["local"]["params_to_update"].append(current_name);
                        else:
                            if(current_name != '_'.join(param.name.split("_")[:-1])):
                                current_name = '_'.join(param.name.split("_")[:-1]);
                                if("running" in current_name):
                                    current_name = '_'.join(current_name.split("_")[:-1]);
                                if(param.grad_req == "write"):
                                    if(current_name not in complete_list):
                                        complete_list.append(current_name);
                                    self.system_dict["local"]["params_to_update"].append(current_name);
                        ip += 1;
                    self.system_dict["model"]["params"]["num_params_to_update"] = len(complete_list);
                    self.system_dict["model"]["status"] = True;
                else:
                    current_name = "";
                    ip = 0;
                    self.system_dict["local"]["params_to_update"] = [];
                    complete_list = [];
                    for param in self.system_dict["local"]["model"].collect_params().values():
                        if(ip==0):
                            current_name = param.name.split("_")[0];
                            if("running" in current_name):
                                current_name = '_'.join(current_name.split("_")[:-1]);
                            if(param.grad_req == "write"):
                                if(current_name not in complete_list):
                                    complete_list.append(current_name);
                                self.system_dict["local"]["params_to_update"].append(current_name);
                        else:
                            if(current_name != param.name.split("_")[0]):
                                current_name = param.name.split("_")[0];
                                if("running" in current_name):
                                    current_name = '_'.join(current_name.split("_")[:-1]);
                                if(param.grad_req == "write"):
                                    if(current_name not in complete_list):
                                        complete_list.append(current_name);
                                    self.system_dict["local"]["params_to_update"].append(current_name);
                        ip += 1;
                    self.system_dict["model"]["params"]["num_params_to_update"] = len(complete_list);
                    self.system_dict["model"]["status"] = True;
            if(self.system_dict["model"]["type"] == "custom"):
                self.custom_print("        Model name:                           {}".format("Custom Model"));
            else:
                self.custom_print("        Model name:                           {}".format(self.system_dict["model"]["params"]["model_name"]));
            self.custom_print("        Num of potentially trainable layers:  {}".format(self.system_dict["model"]["params"]["num_layers"]));
            self.custom_print("        Num of actual trainable layers:       {}".format(self.system_dict["model"]["params"]["num_params_to_update"]));
            self.custom_print("");
            
    ###############################################################################################################################################Classes
- class finetune_model (verbose=1)
- 
Base class for Model setup Args- verbose:- int
- Set verbosity levels 0 - Print Nothing 1 - Print desired details
 Expand source codeclass finetune_model(finetune_dataset): ''' Base class for Model setup Args: verbose (int): Set verbosity levels 0 - Print Nothing 1 - Print desired details ''' def __init__(self, verbose=1): super().__init__(verbose=verbose); ############################################################################################################################################### def set_model_final(self, path=False): ''' Setup model based on set parameters Args: path (str): Dummy variable Returns: None ''' self.custom_print("Model Details"); if(self.system_dict["model"]["params"]["model_path"]): if(os.path.isfile(self.system_dict["model"]["params"]["model_path"][0])): self.custom_print(" Loading model - {}".format(self.system_dict["model"]["params"]["model_path"])); self.system_dict["local"]["model"] = load_model(self.system_dict, external_path=self.system_dict["model"]["params"]["model_path"]); self.system_dict = model_to_device(self.system_dict); self.custom_print(" Model loaded!"); self.custom_print(""); else: msg = "Model not found - {}\n".format(self.system_dict["model"]["params"]["model_path"]); msg += "Previous Training Incomplete."; raise ConstraintError(msg); elif(self.system_dict["states"]["copy_from"]): model_path = self.system_dict["master_systems_dir_relative"] + self.system_dict["origin"][0] + "/" + self.system_dict["origin"][1] + "/output/models/"; if(os.path.isfile(model_path + 'final-symbol.json')): self.custom_print(" Loading model - {}".format(model_path + 'final-symbol.json')); self.system_dict["local"]["model"] = load_model(self.system_dict, path=model_path, final=True); self.system_dict = model_to_device(self.system_dict); self.custom_print(" Model loaded!"); self.custom_print(""); else: msg = "Model not found - {}\n".format(model_path); msg += "Previous Training Incomplete."; raise ConstraintError(msg); elif(self.system_dict["states"]["eval_infer"]): if(os.path.isfile(self.system_dict["model_dir_relative"] + 'final-symbol.json')): self.custom_print(" Loading model - {}".format(self.system_dict["model_dir_relative"] + 'final-symbol.json')); self.system_dict["local"]["model"] = load_model(self.system_dict, final=True); self.system_dict = model_to_device(self.system_dict); self.custom_print(" Model loaded!"); self.custom_print(""); else: msg = "Model not found - {}\n".format(self.system_dict["model_dir_relative"] + 'final-symbol.json'); msg += "Previous Training Incomplete."; raise ConstraintError(msg); else: if(self.system_dict["states"]["resume_train"]): if(os.path.isfile(self.system_dict["model_dir_relative"] + 'resume_state-symbol.json')): self.custom_print(" Loading model - {}".format(self.system_dict["model_dir_relative"] + 'resume_state-symbol.json')); self.system_dict["local"]["model"] = load_model(self.system_dict, resume=True); else: msg = "Model not found - \"{}\"\n".format(self.system_dict["model_dir_relative"] + 'resume_state-symbol.json'); msg += "Training not started. Cannot Run resume Mode"; raise ConstraintError(msg); else: self.custom_print(" Loading pretrained model"); self.system_dict = setup_model(self.system_dict); self.system_dict = model_to_device(self.system_dict); self.custom_print(" Model Loaded on device"); self.system_dict = get_num_layers(self.system_dict); if(not self.system_dict["states"]["resume_train"]): if(self.system_dict["model"]["type"] == "pretrained"): current_name = ""; ip = 0; self.system_dict["local"]["params_to_update"] = []; complete_list = []; for param in self.system_dict["local"]["model"].collect_params().values(): if(ip==0): current_name = '_'.join(param.name.split("_")[:-1]); if("running" in current_name): current_name = '_'.join(current_name.split("_")[:-1]); if(param.grad_req == "write"): if(current_name not in complete_list): complete_list.append(current_name); self.system_dict["local"]["params_to_update"].append(current_name); else: if(current_name != '_'.join(param.name.split("_")[:-1])): current_name = '_'.join(param.name.split("_")[:-1]); if("running" in current_name): current_name = '_'.join(current_name.split("_")[:-1]); if(param.grad_req == "write"): if(current_name not in complete_list): complete_list.append(current_name); self.system_dict["local"]["params_to_update"].append(current_name); ip += 1; self.system_dict["model"]["params"]["num_params_to_update"] = len(complete_list); self.system_dict["model"]["status"] = True; else: current_name = ""; ip = 0; self.system_dict["local"]["params_to_update"] = []; complete_list = []; for param in self.system_dict["local"]["model"].collect_params().values(): if(ip==0): current_name = param.name.split("_")[0]; if("running" in current_name): current_name = '_'.join(current_name.split("_")[:-1]); if(param.grad_req == "write"): if(current_name not in complete_list): complete_list.append(current_name); self.system_dict["local"]["params_to_update"].append(current_name); else: if(current_name != param.name.split("_")[0]): current_name = param.name.split("_")[0]; if("running" in current_name): current_name = '_'.join(current_name.split("_")[:-1]); if(param.grad_req == "write"): if(current_name not in complete_list): complete_list.append(current_name); self.system_dict["local"]["params_to_update"].append(current_name); ip += 1; self.system_dict["model"]["params"]["num_params_to_update"] = len(complete_list); self.system_dict["model"]["status"] = True; if(self.system_dict["model"]["type"] == "custom"): self.custom_print(" Model name: {}".format("Custom Model")); else: self.custom_print(" Model name: {}".format(self.system_dict["model"]["params"]["model_name"])); self.custom_print(" Num of potentially trainable layers: {}".format(self.system_dict["model"]["params"]["num_layers"])); self.custom_print(" Num of actual trainable layers: {}".format(self.system_dict["model"]["params"]["num_params_to_update"])); self.custom_print("");Ancestors- gluon.finetune.level_1_dataset_base.finetune_dataset
- system.base_class.system
 Methods- def set_model_final(self, path=False)
- 
Setup model based on set parameters Args- path:- str
- Dummy variable
 Returns- None
 Expand source codedef set_model_final(self, path=False): ''' Setup model based on set parameters Args: path (str): Dummy variable Returns: None ''' self.custom_print("Model Details"); if(self.system_dict["model"]["params"]["model_path"]): if(os.path.isfile(self.system_dict["model"]["params"]["model_path"][0])): self.custom_print(" Loading model - {}".format(self.system_dict["model"]["params"]["model_path"])); self.system_dict["local"]["model"] = load_model(self.system_dict, external_path=self.system_dict["model"]["params"]["model_path"]); self.system_dict = model_to_device(self.system_dict); self.custom_print(" Model loaded!"); self.custom_print(""); else: msg = "Model not found - {}\n".format(self.system_dict["model"]["params"]["model_path"]); msg += "Previous Training Incomplete."; raise ConstraintError(msg); elif(self.system_dict["states"]["copy_from"]): model_path = self.system_dict["master_systems_dir_relative"] + self.system_dict["origin"][0] + "/" + self.system_dict["origin"][1] + "/output/models/"; if(os.path.isfile(model_path + 'final-symbol.json')): self.custom_print(" Loading model - {}".format(model_path + 'final-symbol.json')); self.system_dict["local"]["model"] = load_model(self.system_dict, path=model_path, final=True); self.system_dict = model_to_device(self.system_dict); self.custom_print(" Model loaded!"); self.custom_print(""); else: msg = "Model not found - {}\n".format(model_path); msg += "Previous Training Incomplete."; raise ConstraintError(msg); elif(self.system_dict["states"]["eval_infer"]): if(os.path.isfile(self.system_dict["model_dir_relative"] + 'final-symbol.json')): self.custom_print(" Loading model - {}".format(self.system_dict["model_dir_relative"] + 'final-symbol.json')); self.system_dict["local"]["model"] = load_model(self.system_dict, final=True); self.system_dict = model_to_device(self.system_dict); self.custom_print(" Model loaded!"); self.custom_print(""); else: msg = "Model not found - {}\n".format(self.system_dict["model_dir_relative"] + 'final-symbol.json'); msg += "Previous Training Incomplete."; raise ConstraintError(msg); else: if(self.system_dict["states"]["resume_train"]): if(os.path.isfile(self.system_dict["model_dir_relative"] + 'resume_state-symbol.json')): self.custom_print(" Loading model - {}".format(self.system_dict["model_dir_relative"] + 'resume_state-symbol.json')); self.system_dict["local"]["model"] = load_model(self.system_dict, resume=True); else: msg = "Model not found - \"{}\"\n".format(self.system_dict["model_dir_relative"] + 'resume_state-symbol.json'); msg += "Training not started. Cannot Run resume Mode"; raise ConstraintError(msg); else: self.custom_print(" Loading pretrained model"); self.system_dict = setup_model(self.system_dict); self.system_dict = model_to_device(self.system_dict); self.custom_print(" Model Loaded on device"); self.system_dict = get_num_layers(self.system_dict); if(not self.system_dict["states"]["resume_train"]): if(self.system_dict["model"]["type"] == "pretrained"): current_name = ""; ip = 0; self.system_dict["local"]["params_to_update"] = []; complete_list = []; for param in self.system_dict["local"]["model"].collect_params().values(): if(ip==0): current_name = '_'.join(param.name.split("_")[:-1]); if("running" in current_name): current_name = '_'.join(current_name.split("_")[:-1]); if(param.grad_req == "write"): if(current_name not in complete_list): complete_list.append(current_name); self.system_dict["local"]["params_to_update"].append(current_name); else: if(current_name != '_'.join(param.name.split("_")[:-1])): current_name = '_'.join(param.name.split("_")[:-1]); if("running" in current_name): current_name = '_'.join(current_name.split("_")[:-1]); if(param.grad_req == "write"): if(current_name not in complete_list): complete_list.append(current_name); self.system_dict["local"]["params_to_update"].append(current_name); ip += 1; self.system_dict["model"]["params"]["num_params_to_update"] = len(complete_list); self.system_dict["model"]["status"] = True; else: current_name = ""; ip = 0; self.system_dict["local"]["params_to_update"] = []; complete_list = []; for param in self.system_dict["local"]["model"].collect_params().values(): if(ip==0): current_name = param.name.split("_")[0]; if("running" in current_name): current_name = '_'.join(current_name.split("_")[:-1]); if(param.grad_req == "write"): if(current_name not in complete_list): complete_list.append(current_name); self.system_dict["local"]["params_to_update"].append(current_name); else: if(current_name != param.name.split("_")[0]): current_name = param.name.split("_")[0]; if("running" in current_name): current_name = '_'.join(current_name.split("_")[:-1]); if(param.grad_req == "write"): if(current_name not in complete_list): complete_list.append(current_name); self.system_dict["local"]["params_to_update"].append(current_name); ip += 1; self.system_dict["model"]["params"]["num_params_to_update"] = len(complete_list); self.system_dict["model"]["status"] = True; if(self.system_dict["model"]["type"] == "custom"): self.custom_print(" Model name: {}".format("Custom Model")); else: self.custom_print(" Model name: {}".format(self.system_dict["model"]["params"]["model_name"])); self.custom_print(" Num of potentially trainable layers: {}".format(self.system_dict["model"]["params"]["num_layers"])); self.custom_print(" Num of actual trainable layers: {}".format(self.system_dict["model"]["params"]["num_params_to_update"])); self.custom_print("");