Module monk.gluon.finetune.level_12_losses_main
Expand source code
from gluon.finetune.imports import *
from system.imports import *
from gluon.finetune.level_11_optimizers_main import prototype_optimizers
class prototype_losses(prototype_optimizers):
'''
Main class for all parameters in expert mode
Args:
verbose (int): Set verbosity levels
0 - Print Nothing
1 - Print desired details
'''
def __init__(self, verbose=1):
super().__init__(verbose=verbose);
###############################################################################################################################################
def loss_l1(self, weight=None, batch_axis=0):
'''
Select L1 Loss
Args:
weight (float): global scalar for weight loss
batch_axis (int): Axis representing number of elements in the batch - N
Returns:
None
'''
self.system_dict = l1(self.system_dict, weight=weight, batch_axis=batch_axis);
self.custom_print("Loss");
self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"]));
self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"]));
self.custom_print("");
###############################################################################################################################################
###############################################################################################################################################
def loss_l2(self, weight=1.0, batch_axis=0):
'''
Select L2 Loss
Args:
weight (float): global scalar for weight loss
batch_axis (int): Axis representing number of elements in the batch - N
Returns:
None
'''
self.system_dict = l2(self.system_dict, weight=weight, batch_axis=batch_axis);
self.custom_print("Loss");
self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"]));
self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"]));
self.custom_print("");
###############################################################################################################################################
###############################################################################################################################################
def loss_softmax_crossentropy(self, weight=None, batch_axis=0, axis_to_sum_over=-1,
label_as_categories=True, label_smoothing=False):
'''
Select soaftmax crossentropy Loss - Auto softmax before applying loss
Args:
weight (float): global scalar for weight loss
batch_axis (int): Axis representing number of elements in the batch - N
axis_to_sum_over (int): Set as -1
label_as_categories (bool): Fixed as True
label_smoothing (bool): If True, label smoothning is applied.
Returns:
None
'''
self.system_dict = softmax_crossentropy(self.system_dict, weight=weight, batch_axis=batch_axis,
axis_to_sum_over=axis_to_sum_over, label_as_categories=label_as_categories,
label_smoothing=label_smoothing);
self.custom_print("Loss");
self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"]));
self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"]));
self.custom_print("");
###############################################################################################################################################
###############################################################################################################################################
def loss_crossentropy(self, weight=None, batch_axis=0, axis_to_sum_over=-1,
label_as_categories=True, label_smoothing=False):
'''
Select crossentropy Loss - Need to manually apply softmax
Args:
weight (float): global scalar for weight loss
batch_axis (int): Axis representing number of elements in the batch - N
axis_to_sum_over (int): Set as -1
label_as_categories (bool): Fixed as True
label_smoothing (bool): If True, label smoothning is applied.
Returns:
None
'''
self.system_dict = crossentropy(self.system_dict, weight=weight, batch_axis=batch_axis,
axis_to_sum_over=axis_to_sum_over, label_as_categories=label_as_categories,
label_smoothing=label_smoothing);
self.custom_print("Loss");
self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"]));
self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"]));
self.custom_print("");
###############################################################################################################################################
###############################################################################################################################################
def loss_sigmoid_binary_crossentropy(self, weight=None, batch_axis=0):
'''
Select sigmoid binary crossentropy Loss - Auto sigmoid before applying loss
Args:
weight (float): global scalar for weight loss
batch_axis (int): Axis representing number of elements in the batch - N
Returns:
None
'''
self.system_dict = sigmoid_binary_crossentropy(self.system_dict, weight=weight, batch_axis=batch_axis);
self.custom_print("Loss");
self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"]));
self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"]));
self.custom_print("");
###############################################################################################################################################
###############################################################################################################################################
def loss_binary_crossentropy(self, weight=None, batch_axis=0):
'''
Select binary crossentropy Loss - Need to manually apply sigmoid
Args:
weight (float): global scalar for weight loss
batch_axis (int): Axis representing number of elements in the batch - N
Returns:
None
'''
self.system_dict = binary_crossentropy(self.system_dict, weight=weight, batch_axis=batch_axis);
self.custom_print("Loss");
self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"]));
self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"]));
self.custom_print("");
###############################################################################################################################################
###############################################################################################################################################
def loss_kldiv(self, log_pre_applied=False, weight=None, batch_axis=0, axis_to_sum_over=-1):
'''
Select lkdiv Loss
Args:
weight (float): global scalar for weight loss
batch_axis (int): Axis representing number of elements in the batch - N
axis_to_sum_over (int): Set as -1
log_pre_applied (bool): If set as False, then logarithmic function is auto applied over target variables
Returns:
None
'''
self.system_dict = kldiv(self.system_dict, weight=weight, batch_axis=batch_axis,
axis_to_sum_over=axis_to_sum_over, log_pre_applied=log_pre_applied);
self.custom_print("Loss");
self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"]));
self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"]));
self.custom_print("");
###############################################################################################################################################
###############################################################################################################################################
def loss_poisson_nll(self, log_pre_applied=False, weight=None, batch_axis=0):
'''
Select poisson_nll Loss
Args:
weight (float): global scalar for weight loss
batch_axis (int): Axis representing number of elements in the batch - N
log_pre_applied (bool): If set as False, then logarithmic function is auto applied over target variables
Returns:
None
'''
self.system_dict = poisson_nll(self.system_dict, log_pre_applied=log_pre_applied,
weight=weight, batch_axis=batch_axis);
self.custom_print("Loss");
self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"]));
self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"]));
self.custom_print("");
###############################################################################################################################################
###############################################################################################################################################
def loss_huber(self, weight=None, batch_axis=0, threshold_for_mean_estimator=1):
'''
Select huber Loss
Args:
weight (float): global scalar for weight loss
batch_axis (int): Axis representing number of elements in the batch - N
threshold_for_mean_estimator (int): Threshold for trimmed mean estimator.
Returns:
None
'''
self.system_dict = huber(self.system_dict, threshold_for_mean_estimator=threshold_for_mean_estimator,
weight=weight, batch_axis=batch_axis);
self.custom_print("Loss");
self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"]));
self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"]));
self.custom_print("");
###############################################################################################################################################
###############################################################################################################################################
def loss_hinge(self, weight=None, batch_axis=0, margin=1):
'''
Select hinge Loss
Args:
weight (float): global scalar for weight loss
batch_axis (int): Axis representing number of elements in the batch - N
margin (float): MArgin value.
Returns:
None
'''
self.system_dict = hinge(self.system_dict, margin=margin,
weight=weight, batch_axis=batch_axis);
self.custom_print("Loss");
self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"]));
self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"]));
self.custom_print("");
###############################################################################################################################################
###############################################################################################################################################
def loss_squared_hinge(self, weight=None, batch_axis=0, margin=1):
'''
Select squared hinge Loss
Args:
weight (float): global scalar for weight loss
batch_axis (int): Axis representing number of elements in the batch - N
margin (float): MArgin value.
Returns:
None
'''
self.system_dict = squared_hinge(self.system_dict, margin=margin,
weight=weight, batch_axis=batch_axis);
self.custom_print("Loss");
self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"]));
self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"]));
self.custom_print("");
###############################################################################################################################################
Classes
class prototype_losses (verbose=1)
-
Main class for all parameters in expert mode
Args
verbose
:int
- Set verbosity levels 0 - Print Nothing 1 - Print desired details
Expand source code
class prototype_losses(prototype_optimizers): ''' Main class for all parameters in expert mode Args: verbose (int): Set verbosity levels 0 - Print Nothing 1 - Print desired details ''' def __init__(self, verbose=1): super().__init__(verbose=verbose); ############################################################################################################################################### def loss_l1(self, weight=None, batch_axis=0): ''' Select L1 Loss Args: weight (float): global scalar for weight loss batch_axis (int): Axis representing number of elements in the batch - N Returns: None ''' self.system_dict = l1(self.system_dict, weight=weight, batch_axis=batch_axis); self.custom_print("Loss"); self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"])); self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"])); self.custom_print(""); ############################################################################################################################################### ############################################################################################################################################### def loss_l2(self, weight=1.0, batch_axis=0): ''' Select L2 Loss Args: weight (float): global scalar for weight loss batch_axis (int): Axis representing number of elements in the batch - N Returns: None ''' self.system_dict = l2(self.system_dict, weight=weight, batch_axis=batch_axis); self.custom_print("Loss"); self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"])); self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"])); self.custom_print(""); ############################################################################################################################################### ############################################################################################################################################### def loss_softmax_crossentropy(self, weight=None, batch_axis=0, axis_to_sum_over=-1, label_as_categories=True, label_smoothing=False): ''' Select soaftmax crossentropy Loss - Auto softmax before applying loss Args: weight (float): global scalar for weight loss batch_axis (int): Axis representing number of elements in the batch - N axis_to_sum_over (int): Set as -1 label_as_categories (bool): Fixed as True label_smoothing (bool): If True, label smoothning is applied. Returns: None ''' self.system_dict = softmax_crossentropy(self.system_dict, weight=weight, batch_axis=batch_axis, axis_to_sum_over=axis_to_sum_over, label_as_categories=label_as_categories, label_smoothing=label_smoothing); self.custom_print("Loss"); self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"])); self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"])); self.custom_print(""); ############################################################################################################################################### ############################################################################################################################################### def loss_crossentropy(self, weight=None, batch_axis=0, axis_to_sum_over=-1, label_as_categories=True, label_smoothing=False): ''' Select crossentropy Loss - Need to manually apply softmax Args: weight (float): global scalar for weight loss batch_axis (int): Axis representing number of elements in the batch - N axis_to_sum_over (int): Set as -1 label_as_categories (bool): Fixed as True label_smoothing (bool): If True, label smoothning is applied. Returns: None ''' self.system_dict = crossentropy(self.system_dict, weight=weight, batch_axis=batch_axis, axis_to_sum_over=axis_to_sum_over, label_as_categories=label_as_categories, label_smoothing=label_smoothing); self.custom_print("Loss"); self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"])); self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"])); self.custom_print(""); ############################################################################################################################################### ############################################################################################################################################### def loss_sigmoid_binary_crossentropy(self, weight=None, batch_axis=0): ''' Select sigmoid binary crossentropy Loss - Auto sigmoid before applying loss Args: weight (float): global scalar for weight loss batch_axis (int): Axis representing number of elements in the batch - N Returns: None ''' self.system_dict = sigmoid_binary_crossentropy(self.system_dict, weight=weight, batch_axis=batch_axis); self.custom_print("Loss"); self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"])); self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"])); self.custom_print(""); ############################################################################################################################################### ############################################################################################################################################### def loss_binary_crossentropy(self, weight=None, batch_axis=0): ''' Select binary crossentropy Loss - Need to manually apply sigmoid Args: weight (float): global scalar for weight loss batch_axis (int): Axis representing number of elements in the batch - N Returns: None ''' self.system_dict = binary_crossentropy(self.system_dict, weight=weight, batch_axis=batch_axis); self.custom_print("Loss"); self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"])); self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"])); self.custom_print(""); ############################################################################################################################################### ############################################################################################################################################### def loss_kldiv(self, log_pre_applied=False, weight=None, batch_axis=0, axis_to_sum_over=-1): ''' Select lkdiv Loss Args: weight (float): global scalar for weight loss batch_axis (int): Axis representing number of elements in the batch - N axis_to_sum_over (int): Set as -1 log_pre_applied (bool): If set as False, then logarithmic function is auto applied over target variables Returns: None ''' self.system_dict = kldiv(self.system_dict, weight=weight, batch_axis=batch_axis, axis_to_sum_over=axis_to_sum_over, log_pre_applied=log_pre_applied); self.custom_print("Loss"); self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"])); self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"])); self.custom_print(""); ############################################################################################################################################### ############################################################################################################################################### def loss_poisson_nll(self, log_pre_applied=False, weight=None, batch_axis=0): ''' Select poisson_nll Loss Args: weight (float): global scalar for weight loss batch_axis (int): Axis representing number of elements in the batch - N log_pre_applied (bool): If set as False, then logarithmic function is auto applied over target variables Returns: None ''' self.system_dict = poisson_nll(self.system_dict, log_pre_applied=log_pre_applied, weight=weight, batch_axis=batch_axis); self.custom_print("Loss"); self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"])); self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"])); self.custom_print(""); ############################################################################################################################################### ############################################################################################################################################### def loss_huber(self, weight=None, batch_axis=0, threshold_for_mean_estimator=1): ''' Select huber Loss Args: weight (float): global scalar for weight loss batch_axis (int): Axis representing number of elements in the batch - N threshold_for_mean_estimator (int): Threshold for trimmed mean estimator. Returns: None ''' self.system_dict = huber(self.system_dict, threshold_for_mean_estimator=threshold_for_mean_estimator, weight=weight, batch_axis=batch_axis); self.custom_print("Loss"); self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"])); self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"])); self.custom_print(""); ############################################################################################################################################### ############################################################################################################################################### def loss_hinge(self, weight=None, batch_axis=0, margin=1): ''' Select hinge Loss Args: weight (float): global scalar for weight loss batch_axis (int): Axis representing number of elements in the batch - N margin (float): MArgin value. Returns: None ''' self.system_dict = hinge(self.system_dict, margin=margin, weight=weight, batch_axis=batch_axis); self.custom_print("Loss"); self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"])); self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"])); self.custom_print(""); ############################################################################################################################################### ############################################################################################################################################### def loss_squared_hinge(self, weight=None, batch_axis=0, margin=1): ''' Select squared hinge Loss Args: weight (float): global scalar for weight loss batch_axis (int): Axis representing number of elements in the batch - N margin (float): MArgin value. Returns: None ''' self.system_dict = squared_hinge(self.system_dict, margin=margin, weight=weight, batch_axis=batch_axis); self.custom_print("Loss"); self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"])); self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"])); self.custom_print("");
Ancestors
- gluon.finetune.level_11_optimizers_main.prototype_optimizers
- gluon.finetune.level_10_schedulers_main.prototype_schedulers
- gluon.finetune.level_9_transforms_main.prototype_transforms
- gluon.finetune.level_8_layers_main.prototype_layers
- gluon.finetune.level_7_aux_main.prototype_aux
- gluon.finetune.level_6_params_main.prototype_params
- gluon.finetune.level_5_state_base.finetune_state
- gluon.finetune.level_4_evaluation_base.finetune_evaluation
- gluon.finetune.level_3_training_base.finetune_training
- gluon.finetune.level_2_model_base.finetune_model
- gluon.finetune.level_1_dataset_base.finetune_dataset
- system.base_class.system
Methods
def loss_binary_crossentropy(self, weight=None, batch_axis=0)
-
Select binary crossentropy Loss - Need to manually apply sigmoid
Args
weight
:float
- global scalar for weight loss
batch_axis
:int
- Axis representing number of elements in the batch - N
Returns
None
Expand source code
def loss_binary_crossentropy(self, weight=None, batch_axis=0): ''' Select binary crossentropy Loss - Need to manually apply sigmoid Args: weight (float): global scalar for weight loss batch_axis (int): Axis representing number of elements in the batch - N Returns: None ''' self.system_dict = binary_crossentropy(self.system_dict, weight=weight, batch_axis=batch_axis); self.custom_print("Loss"); self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"])); self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"])); self.custom_print("");
def loss_crossentropy(self, weight=None, batch_axis=0, axis_to_sum_over=-1, label_as_categories=True, label_smoothing=False)
-
Select crossentropy Loss - Need to manually apply softmax
Args
weight
:float
- global scalar for weight loss
batch_axis
:int
- Axis representing number of elements in the batch - N
axis_to_sum_over
:int
- Set as -1
label_as_categories
:bool
- Fixed as True
label_smoothing
:bool
- If True, label smoothning is applied.
Returns
None
Expand source code
def loss_crossentropy(self, weight=None, batch_axis=0, axis_to_sum_over=-1, label_as_categories=True, label_smoothing=False): ''' Select crossentropy Loss - Need to manually apply softmax Args: weight (float): global scalar for weight loss batch_axis (int): Axis representing number of elements in the batch - N axis_to_sum_over (int): Set as -1 label_as_categories (bool): Fixed as True label_smoothing (bool): If True, label smoothning is applied. Returns: None ''' self.system_dict = crossentropy(self.system_dict, weight=weight, batch_axis=batch_axis, axis_to_sum_over=axis_to_sum_over, label_as_categories=label_as_categories, label_smoothing=label_smoothing); self.custom_print("Loss"); self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"])); self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"])); self.custom_print("");
def loss_hinge(self, weight=None, batch_axis=0, margin=1)
-
Select hinge Loss
Args
weight
:float
- global scalar for weight loss
batch_axis
:int
- Axis representing number of elements in the batch - N
margin
:float
- MArgin value.
Returns
None
Expand source code
def loss_hinge(self, weight=None, batch_axis=0, margin=1): ''' Select hinge Loss Args: weight (float): global scalar for weight loss batch_axis (int): Axis representing number of elements in the batch - N margin (float): MArgin value. Returns: None ''' self.system_dict = hinge(self.system_dict, margin=margin, weight=weight, batch_axis=batch_axis); self.custom_print("Loss"); self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"])); self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"])); self.custom_print("");
def loss_huber(self, weight=None, batch_axis=0, threshold_for_mean_estimator=1)
-
Select huber Loss
Args
weight
:float
- global scalar for weight loss
batch_axis
:int
- Axis representing number of elements in the batch - N
threshold_for_mean_estimator
:int
- Threshold for trimmed mean estimator.
Returns
None
Expand source code
def loss_huber(self, weight=None, batch_axis=0, threshold_for_mean_estimator=1): ''' Select huber Loss Args: weight (float): global scalar for weight loss batch_axis (int): Axis representing number of elements in the batch - N threshold_for_mean_estimator (int): Threshold for trimmed mean estimator. Returns: None ''' self.system_dict = huber(self.system_dict, threshold_for_mean_estimator=threshold_for_mean_estimator, weight=weight, batch_axis=batch_axis); self.custom_print("Loss"); self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"])); self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"])); self.custom_print("");
def loss_kldiv(self, log_pre_applied=False, weight=None, batch_axis=0, axis_to_sum_over=-1)
-
Select lkdiv Loss
Args
weight
:float
- global scalar for weight loss
batch_axis
:int
- Axis representing number of elements in the batch - N
axis_to_sum_over
:int
- Set as -1
log_pre_applied
:bool
- If set as False, then logarithmic function is auto applied over target variables
Returns
None
Expand source code
def loss_kldiv(self, log_pre_applied=False, weight=None, batch_axis=0, axis_to_sum_over=-1): ''' Select lkdiv Loss Args: weight (float): global scalar for weight loss batch_axis (int): Axis representing number of elements in the batch - N axis_to_sum_over (int): Set as -1 log_pre_applied (bool): If set as False, then logarithmic function is auto applied over target variables Returns: None ''' self.system_dict = kldiv(self.system_dict, weight=weight, batch_axis=batch_axis, axis_to_sum_over=axis_to_sum_over, log_pre_applied=log_pre_applied); self.custom_print("Loss"); self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"])); self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"])); self.custom_print("");
def loss_l1(self, weight=None, batch_axis=0)
-
Select L1 Loss
Args
weight
:float
- global scalar for weight loss
batch_axis
:int
- Axis representing number of elements in the batch - N
Returns
None
Expand source code
def loss_l1(self, weight=None, batch_axis=0): ''' Select L1 Loss Args: weight (float): global scalar for weight loss batch_axis (int): Axis representing number of elements in the batch - N Returns: None ''' self.system_dict = l1(self.system_dict, weight=weight, batch_axis=batch_axis); self.custom_print("Loss"); self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"])); self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"])); self.custom_print("");
def loss_l2(self, weight=1.0, batch_axis=0)
-
Select L2 Loss
Args
weight
:float
- global scalar for weight loss
batch_axis
:int
- Axis representing number of elements in the batch - N
Returns
None
Expand source code
def loss_l2(self, weight=1.0, batch_axis=0): ''' Select L2 Loss Args: weight (float): global scalar for weight loss batch_axis (int): Axis representing number of elements in the batch - N Returns: None ''' self.system_dict = l2(self.system_dict, weight=weight, batch_axis=batch_axis); self.custom_print("Loss"); self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"])); self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"])); self.custom_print("");
def loss_poisson_nll(self, log_pre_applied=False, weight=None, batch_axis=0)
-
Select poisson_nll Loss
Args
weight
:float
- global scalar for weight loss
batch_axis
:int
- Axis representing number of elements in the batch - N
log_pre_applied
:bool
- If set as False, then logarithmic function is auto applied over target variables
Returns
None
Expand source code
def loss_poisson_nll(self, log_pre_applied=False, weight=None, batch_axis=0): ''' Select poisson_nll Loss Args: weight (float): global scalar for weight loss batch_axis (int): Axis representing number of elements in the batch - N log_pre_applied (bool): If set as False, then logarithmic function is auto applied over target variables Returns: None ''' self.system_dict = poisson_nll(self.system_dict, log_pre_applied=log_pre_applied, weight=weight, batch_axis=batch_axis); self.custom_print("Loss"); self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"])); self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"])); self.custom_print("");
def loss_sigmoid_binary_crossentropy(self, weight=None, batch_axis=0)
-
Select sigmoid binary crossentropy Loss - Auto sigmoid before applying loss
Args
weight
:float
- global scalar for weight loss
batch_axis
:int
- Axis representing number of elements in the batch - N
Returns
None
Expand source code
def loss_sigmoid_binary_crossentropy(self, weight=None, batch_axis=0): ''' Select sigmoid binary crossentropy Loss - Auto sigmoid before applying loss Args: weight (float): global scalar for weight loss batch_axis (int): Axis representing number of elements in the batch - N Returns: None ''' self.system_dict = sigmoid_binary_crossentropy(self.system_dict, weight=weight, batch_axis=batch_axis); self.custom_print("Loss"); self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"])); self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"])); self.custom_print("");
def loss_softmax_crossentropy(self, weight=None, batch_axis=0, axis_to_sum_over=-1, label_as_categories=True, label_smoothing=False)
-
Select soaftmax crossentropy Loss - Auto softmax before applying loss
Args
weight
:float
- global scalar for weight loss
batch_axis
:int
- Axis representing number of elements in the batch - N
axis_to_sum_over
:int
- Set as -1
label_as_categories
:bool
- Fixed as True
label_smoothing
:bool
- If True, label smoothning is applied.
Returns
None
Expand source code
def loss_softmax_crossentropy(self, weight=None, batch_axis=0, axis_to_sum_over=-1, label_as_categories=True, label_smoothing=False): ''' Select soaftmax crossentropy Loss - Auto softmax before applying loss Args: weight (float): global scalar for weight loss batch_axis (int): Axis representing number of elements in the batch - N axis_to_sum_over (int): Set as -1 label_as_categories (bool): Fixed as True label_smoothing (bool): If True, label smoothning is applied. Returns: None ''' self.system_dict = softmax_crossentropy(self.system_dict, weight=weight, batch_axis=batch_axis, axis_to_sum_over=axis_to_sum_over, label_as_categories=label_as_categories, label_smoothing=label_smoothing); self.custom_print("Loss"); self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"])); self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"])); self.custom_print("");
def loss_squared_hinge(self, weight=None, batch_axis=0, margin=1)
-
Select squared hinge Loss
Args
weight
:float
- global scalar for weight loss
batch_axis
:int
- Axis representing number of elements in the batch - N
margin
:float
- MArgin value.
Returns
None
Expand source code
def loss_squared_hinge(self, weight=None, batch_axis=0, margin=1): ''' Select squared hinge Loss Args: weight (float): global scalar for weight loss batch_axis (int): Axis representing number of elements in the batch - N margin (float): MArgin value. Returns: None ''' self.system_dict = squared_hinge(self.system_dict, margin=margin, weight=weight, batch_axis=batch_axis); self.custom_print("Loss"); self.custom_print(" Name: {}".format(self.system_dict["hyper-parameters"]["loss"]["name"])); self.custom_print(" Params: {}".format(self.system_dict["hyper-parameters"]["loss"]["params"])); self.custom_print("");