Module 7_yolov3.lib.utils.torch_utils
Expand source code
import os
import torch
def init_seeds(seed=0):
torch.manual_seed(seed)
# Remove randomness (may be slower on Tesla GPUs) # https://pytorch.org/docs/stable/notes/randomness.html
if seed == 0:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def select_device(device='', apex=False, batch_size=None):
# device = 'cpu' or '0' or '0,1,2,3'
cpu_request = device.lower() == 'cpu'
if device and not cpu_request: # if device requested other than 'cpu'
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
assert torch.cuda.is_available(), 'CUDA unavailable, invalid device %s requested' % device # check availablity
cuda = False if cpu_request else torch.cuda.is_available()
if cuda:
c = 1024 ** 2 # bytes to MB
ng = torch.cuda.device_count()
if ng > 1 and batch_size: # check that batch_size is compatible with device_count
assert batch_size % ng == 0, 'batch-size %g not multiple of GPU count %g' % (batch_size, ng)
x = [torch.cuda.get_device_properties(i) for i in range(ng)]
s = 'Using CUDA ' + ('Apex ' if apex else '') # apex for mixed precision https://github.com/NVIDIA/apex
for i in range(0, ng):
if i == 1:
s = ' ' * len(s)
print("%sdevice%g _CudaDeviceProperties(name='%s', total_memory=%dMB)" %
(s, i, x[i].name, x[i].total_memory / c))
else:
print('Using CPU')
print('') # skip a line
return torch.device('cuda:0' if cuda else 'cpu')
def fuse_conv_and_bn(conv, bn):
# https://tehnokv.com/posts/fusing-batchnorm-and-conv/
with torch.no_grad():
# init
fusedconv = torch.nn.Conv2d(conv.in_channels,
conv.out_channels,
kernel_size=conv.kernel_size,
stride=conv.stride,
padding=conv.padding,
bias=True)
# prepare filters
w_conv = conv.weight.clone().view(conv.out_channels, -1)
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))
# prepare spatial bias
if conv.bias is not None:
b_conv = conv.bias
else:
b_conv = torch.zeros(conv.weight.size(0))
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
fusedconv.bias.copy_(b_conv + b_bn)
return fusedconv
def model_info(model, report='summary'):
# Plots a line-by-line description of a PyTorch model
n_p = sum(x.numel() for x in model.parameters()) # number parameters
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
if report is 'full':
print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
for i, (name, p) in enumerate(model.named_parameters()):
name = name.replace('module_list.', '')
print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
print('Model Summary: %g layers, %g parameters, %g gradients' % (len(list(model.parameters())), n_p, n_g))
def load_classifier(name='resnet101', n=2):
# Loads a pretrained model reshaped to n-class output
import pretrainedmodels # https://github.com/Cadene/pretrained-models.pytorch#torchvision
model = pretrainedmodels.__dict__[name](num_classes=1000, pretrained='imagenet')
# Display model properties
for x in ['model.input_size', 'model.input_space', 'model.input_range', 'model.mean', 'model.std']:
print(x + ' =', eval(x))
# Reshape output to n classes
filters = model.last_linear.weight.shape[1]
model.last_linear.bias = torch.nn.Parameter(torch.zeros(n))
model.last_linear.weight = torch.nn.Parameter(torch.zeros(n, filters))
model.last_linear.out_features = n
return model
from collections import defaultdict
from torch.optim import Optimizer
class Lookahead(Optimizer):
def __init__(self, optimizer, k=5, alpha=0.5):
self.optimizer = optimizer
self.k = k
self.alpha = alpha
self.param_groups = self.optimizer.param_groups
self.state = defaultdict(dict)
self.fast_state = self.optimizer.state
for group in self.param_groups:
group["counter"] = 0
def update(self, group):
for fast in group["params"]:
param_state = self.state[fast]
if "slow_param" not in param_state:
param_state["slow_param"] = torch.zeros_like(fast.data)
param_state["slow_param"].copy_(fast.data)
slow = param_state["slow_param"]
slow += (fast.data - slow) * self.alpha
fast.data.copy_(slow)
def update_lookahead(self):
for group in self.param_groups:
self.update(group)
def step(self, closure=None):
loss = self.optimizer.step(closure)
for group in self.param_groups:
if group["counter"] == 0:
self.update(group)
group["counter"] += 1
if group["counter"] >= self.k:
group["counter"] = 0
return loss
def state_dict(self):
fast_state_dict = self.optimizer.state_dict()
slow_state = {
(id(k) if isinstance(k, torch.Tensor) else k): v
for k, v in self.state.items()
}
fast_state = fast_state_dict["state"]
param_groups = fast_state_dict["param_groups"]
return {
"fast_state": fast_state,
"slow_state": slow_state,
"param_groups": param_groups,
}
def load_state_dict(self, state_dict):
slow_state_dict = {
"state": state_dict["slow_state"],
"param_groups": state_dict["param_groups"],
}
fast_state_dict = {
"state": state_dict["fast_state"],
"param_groups": state_dict["param_groups"],
}
super(Lookahead, self).load_state_dict(slow_state_dict)
self.optimizer.load_state_dict(fast_state_dict)
self.fast_state = self.optimizer.state
def add_param_group(self, param_group):
param_group["counter"] = 0
self.optimizer.add_param_group(param_group)
Functions
def fuse_conv_and_bn(conv, bn)
-
Expand source code
def fuse_conv_and_bn(conv, bn): # https://tehnokv.com/posts/fusing-batchnorm-and-conv/ with torch.no_grad(): # init fusedconv = torch.nn.Conv2d(conv.in_channels, conv.out_channels, kernel_size=conv.kernel_size, stride=conv.stride, padding=conv.padding, bias=True) # prepare filters w_conv = conv.weight.clone().view(conv.out_channels, -1) w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size())) # prepare spatial bias if conv.bias is not None: b_conv = conv.bias else: b_conv = torch.zeros(conv.weight.size(0)) b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps)) fusedconv.bias.copy_(b_conv + b_bn) return fusedconv
def init_seeds(seed=0)
-
Expand source code
def init_seeds(seed=0): torch.manual_seed(seed) # Remove randomness (may be slower on Tesla GPUs) # https://pytorch.org/docs/stable/notes/randomness.html if seed == 0: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False
def load_classifier(name='resnet101', n=2)
-
Expand source code
def load_classifier(name='resnet101', n=2): # Loads a pretrained model reshaped to n-class output import pretrainedmodels # https://github.com/Cadene/pretrained-models.pytorch#torchvision model = pretrainedmodels.__dict__[name](num_classes=1000, pretrained='imagenet') # Display model properties for x in ['model.input_size', 'model.input_space', 'model.input_range', 'model.mean', 'model.std']: print(x + ' =', eval(x)) # Reshape output to n classes filters = model.last_linear.weight.shape[1] model.last_linear.bias = torch.nn.Parameter(torch.zeros(n)) model.last_linear.weight = torch.nn.Parameter(torch.zeros(n, filters)) model.last_linear.out_features = n return model
def model_info(model, report='summary')
-
Expand source code
def model_info(model, report='summary'): # Plots a line-by-line description of a PyTorch model n_p = sum(x.numel() for x in model.parameters()) # number parameters n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients if report is 'full': print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma')) for i, (name, p) in enumerate(model.named_parameters()): name = name.replace('module_list.', '') print('%5g %40s %9s %12g %20s %10.3g %10.3g' % (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std())) print('Model Summary: %g layers, %g parameters, %g gradients' % (len(list(model.parameters())), n_p, n_g))
def select_device(device='', apex=False, batch_size=None)
-
Expand source code
def select_device(device='', apex=False, batch_size=None): # device = 'cpu' or '0' or '0,1,2,3' cpu_request = device.lower() == 'cpu' if device and not cpu_request: # if device requested other than 'cpu' os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable assert torch.cuda.is_available(), 'CUDA unavailable, invalid device %s requested' % device # check availablity cuda = False if cpu_request else torch.cuda.is_available() if cuda: c = 1024 ** 2 # bytes to MB ng = torch.cuda.device_count() if ng > 1 and batch_size: # check that batch_size is compatible with device_count assert batch_size % ng == 0, 'batch-size %g not multiple of GPU count %g' % (batch_size, ng) x = [torch.cuda.get_device_properties(i) for i in range(ng)] s = 'Using CUDA ' + ('Apex ' if apex else '') # apex for mixed precision https://github.com/NVIDIA/apex for i in range(0, ng): if i == 1: s = ' ' * len(s) print("%sdevice%g _CudaDeviceProperties(name='%s', total_memory=%dMB)" % (s, i, x[i].name, x[i].total_memory / c)) else: print('Using CPU') print('') # skip a line return torch.device('cuda:0' if cuda else 'cpu')
Classes
class Lookahead (optimizer, k=5, alpha=0.5)
-
Base class for all optimizers.
Warning
Parameters need to be specified as collections that have a deterministic ordering that is consistent between runs. Examples of objects that don't satisfy those properties are sets and iterators over values of dictionaries.
Arguments
- params (iterable): an iterable of :class:
torch.Tensor
s or - :class:
dict
s. Specifies what Tensors should be optimized. defaults
:(dict): a dict containing default values
ofoptimization
- options (used when a parameter group doesn't specify them).
Expand source code
class Lookahead(Optimizer): def __init__(self, optimizer, k=5, alpha=0.5): self.optimizer = optimizer self.k = k self.alpha = alpha self.param_groups = self.optimizer.param_groups self.state = defaultdict(dict) self.fast_state = self.optimizer.state for group in self.param_groups: group["counter"] = 0 def update(self, group): for fast in group["params"]: param_state = self.state[fast] if "slow_param" not in param_state: param_state["slow_param"] = torch.zeros_like(fast.data) param_state["slow_param"].copy_(fast.data) slow = param_state["slow_param"] slow += (fast.data - slow) * self.alpha fast.data.copy_(slow) def update_lookahead(self): for group in self.param_groups: self.update(group) def step(self, closure=None): loss = self.optimizer.step(closure) for group in self.param_groups: if group["counter"] == 0: self.update(group) group["counter"] += 1 if group["counter"] >= self.k: group["counter"] = 0 return loss def state_dict(self): fast_state_dict = self.optimizer.state_dict() slow_state = { (id(k) if isinstance(k, torch.Tensor) else k): v for k, v in self.state.items() } fast_state = fast_state_dict["state"] param_groups = fast_state_dict["param_groups"] return { "fast_state": fast_state, "slow_state": slow_state, "param_groups": param_groups, } def load_state_dict(self, state_dict): slow_state_dict = { "state": state_dict["slow_state"], "param_groups": state_dict["param_groups"], } fast_state_dict = { "state": state_dict["fast_state"], "param_groups": state_dict["param_groups"], } super(Lookahead, self).load_state_dict(slow_state_dict) self.optimizer.load_state_dict(fast_state_dict) self.fast_state = self.optimizer.state def add_param_group(self, param_group): param_group["counter"] = 0 self.optimizer.add_param_group(param_group)
Ancestors
- torch.optim.optimizer.Optimizer
Methods
def add_param_group(self, param_group)
-
Add a param group to the :class:
Optimizer
sparam_groups
.This can be useful when fine tuning a pre-trained network as frozen layers can be made trainable and added to the :class:
Optimizer
as training progresses.Arguments
param_group (dict): Specifies what Tensors should be optimized along with group specific optimization options.
Expand source code
def add_param_group(self, param_group): param_group["counter"] = 0 self.optimizer.add_param_group(param_group)
def load_state_dict(self, state_dict)
-
Loads the optimizer state.
Arguments
state_dict (dict): optimizer state. Should be an object returned from a call to :meth:
state_dict
.Expand source code
def load_state_dict(self, state_dict): slow_state_dict = { "state": state_dict["slow_state"], "param_groups": state_dict["param_groups"], } fast_state_dict = { "state": state_dict["fast_state"], "param_groups": state_dict["param_groups"], } super(Lookahead, self).load_state_dict(slow_state_dict) self.optimizer.load_state_dict(fast_state_dict) self.fast_state = self.optimizer.state
def state_dict(self)
-
Returns the state of the optimizer as a :class:
dict
.It contains two entries:
- state - a dict holding current optimization state. Its content differs between optimizer classes.
- param_groups - a dict containing all parameter groups
Expand source code
def state_dict(self): fast_state_dict = self.optimizer.state_dict() slow_state = { (id(k) if isinstance(k, torch.Tensor) else k): v for k, v in self.state.items() } fast_state = fast_state_dict["state"] param_groups = fast_state_dict["param_groups"] return { "fast_state": fast_state, "slow_state": slow_state, "param_groups": param_groups, }
def step(self, closure=None)
-
Performs a single optimization step (parameter update).
Arguments
closure (callable): A closure that reevaluates the model and returns the loss. Optional for most optimizers.
Expand source code
def step(self, closure=None): loss = self.optimizer.step(closure) for group in self.param_groups: if group["counter"] == 0: self.update(group) group["counter"] += 1 if group["counter"] >= self.k: group["counter"] = 0 return loss
def update(self, group)
-
Expand source code
def update(self, group): for fast in group["params"]: param_state = self.state[fast] if "slow_param" not in param_state: param_state["slow_param"] = torch.zeros_like(fast.data) param_state["slow_param"].copy_(fast.data) slow = param_state["slow_param"] slow += (fast.data - slow) * self.alpha fast.data.copy_(slow)
def update_lookahead(self)
-
Expand source code
def update_lookahead(self): for group in self.param_groups: self.update(group)
- params (iterable): an iterable of :class: