Module 4_efficientdet.lib.src.utils
Expand source code
import torch
import torch.nn as nn
import numpy as np
class BBoxTransform(nn.Module):
def __init__(self, mean=None, std=None):
super(BBoxTransform, self).__init__()
if mean is None:
self.mean = torch.from_numpy(np.array([0, 0, 0, 0]).astype(np.float32))
else:
self.mean = mean
if std is None:
self.std = torch.from_numpy(np.array([0.1, 0.1, 0.2, 0.2]).astype(np.float32))
else:
self.std = std
if torch.cuda.is_available():
self.mean = self.mean.cuda()
self.std = self.std.cuda()
def forward(self, boxes, deltas):
widths = boxes[:, :, 2] - boxes[:, :, 0]
heights = boxes[:, :, 3] - boxes[:, :, 1]
ctr_x = boxes[:, :, 0] + 0.5 * widths
ctr_y = boxes[:, :, 1] + 0.5 * heights
dx = deltas[:, :, 0] * self.std[0] + self.mean[0]
dy = deltas[:, :, 1] * self.std[1] + self.mean[1]
dw = deltas[:, :, 2] * self.std[2] + self.mean[2]
dh = deltas[:, :, 3] * self.std[3] + self.mean[3]
pred_ctr_x = ctr_x + dx * widths
pred_ctr_y = ctr_y + dy * heights
pred_w = torch.exp(dw) * widths
pred_h = torch.exp(dh) * heights
pred_boxes_x1 = pred_ctr_x - 0.5 * pred_w
pred_boxes_y1 = pred_ctr_y - 0.5 * pred_h
pred_boxes_x2 = pred_ctr_x + 0.5 * pred_w
pred_boxes_y2 = pred_ctr_y + 0.5 * pred_h
pred_boxes = torch.stack([pred_boxes_x1, pred_boxes_y1, pred_boxes_x2, pred_boxes_y2], dim=2)
return pred_boxes
class ClipBoxes(nn.Module):
def __init__(self):
super(ClipBoxes, self).__init__()
def forward(self, boxes, img):
batch_size, num_channels, height, width = img.shape
boxes[:, :, 0] = torch.clamp(boxes[:, :, 0], min=0)
boxes[:, :, 1] = torch.clamp(boxes[:, :, 1], min=0)
boxes[:, :, 2] = torch.clamp(boxes[:, :, 2], max=width)
boxes[:, :, 3] = torch.clamp(boxes[:, :, 3], max=height)
return boxes
class Anchors(nn.Module):
def __init__(self, pyramid_levels=None, strides=None, sizes=None, ratios=None, scales=None):
super(Anchors, self).__init__()
if pyramid_levels is None:
self.pyramid_levels = [3, 4, 5, 6, 7]
if strides is None:
self.strides = [2 ** x for x in self.pyramid_levels]
if sizes is None:
self.sizes = [2 ** (x + 2) for x in self.pyramid_levels]
if ratios is None:
self.ratios = np.array([0.5, 1, 2])
if scales is None:
self.scales = np.array([2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)])
def forward(self, image):
image_shape = image.shape[2:]
image_shape = np.array(image_shape)
image_shapes = [(image_shape + 2 ** x - 1) // (2 ** x) for x in self.pyramid_levels]
all_anchors = np.zeros((0, 4)).astype(np.float32)
for idx, p in enumerate(self.pyramid_levels):
anchors = generate_anchors(base_size=self.sizes[idx], ratios=self.ratios, scales=self.scales)
shifted_anchors = shift(image_shapes[idx], self.strides[idx], anchors)
all_anchors = np.append(all_anchors, shifted_anchors, axis=0)
all_anchors = np.expand_dims(all_anchors, axis=0)
anchors = torch.from_numpy(all_anchors.astype(np.float32))
if torch.cuda.is_available():
anchors = anchors.cuda()
return anchors
def generate_anchors(base_size=16, ratios=None, scales=None):
if ratios is None:
ratios = np.array([0.5, 1, 2])
if scales is None:
scales = np.array([2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)])
num_anchors = len(ratios) * len(scales)
anchors = np.zeros((num_anchors, 4))
anchors[:, 2:] = base_size * np.tile(scales, (2, len(ratios))).T
areas = anchors[:, 2] * anchors[:, 3]
anchors[:, 2] = np.sqrt(areas / np.repeat(ratios, len(scales)))
anchors[:, 3] = anchors[:, 2] * np.repeat(ratios, len(scales))
anchors[:, 0::2] -= np.tile(anchors[:, 2] * 0.5, (2, 1)).T
anchors[:, 1::2] -= np.tile(anchors[:, 3] * 0.5, (2, 1)).T
return anchors
def compute_shape(image_shape, pyramid_levels):
image_shape = np.array(image_shape[:2])
image_shapes = [(image_shape + 2 ** x - 1) // (2 ** x) for x in pyramid_levels]
return image_shapes
def shift(shape, stride, anchors):
shift_x = (np.arange(0, shape[1]) + 0.5) * stride
shift_y = (np.arange(0, shape[0]) + 0.5) * stride
shift_x, shift_y = np.meshgrid(shift_x, shift_y)
shifts = np.vstack((
shift_x.ravel(), shift_y.ravel(),
shift_x.ravel(), shift_y.ravel()
)).transpose()
A = anchors.shape[0]
K = shifts.shape[0]
all_anchors = (anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2)))
all_anchors = all_anchors.reshape((K * A, 4))
return all_anchors
Functions
def compute_shape(image_shape, pyramid_levels)
-
Expand source code
def compute_shape(image_shape, pyramid_levels): image_shape = np.array(image_shape[:2]) image_shapes = [(image_shape + 2 ** x - 1) // (2 ** x) for x in pyramid_levels] return image_shapes
def generate_anchors(base_size=16, ratios=None, scales=None)
-
Expand source code
def generate_anchors(base_size=16, ratios=None, scales=None): if ratios is None: ratios = np.array([0.5, 1, 2]) if scales is None: scales = np.array([2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)]) num_anchors = len(ratios) * len(scales) anchors = np.zeros((num_anchors, 4)) anchors[:, 2:] = base_size * np.tile(scales, (2, len(ratios))).T areas = anchors[:, 2] * anchors[:, 3] anchors[:, 2] = np.sqrt(areas / np.repeat(ratios, len(scales))) anchors[:, 3] = anchors[:, 2] * np.repeat(ratios, len(scales)) anchors[:, 0::2] -= np.tile(anchors[:, 2] * 0.5, (2, 1)).T anchors[:, 1::2] -= np.tile(anchors[:, 3] * 0.5, (2, 1)).T return anchors
def shift(shape, stride, anchors)
-
Expand source code
def shift(shape, stride, anchors): shift_x = (np.arange(0, shape[1]) + 0.5) * stride shift_y = (np.arange(0, shape[0]) + 0.5) * stride shift_x, shift_y = np.meshgrid(shift_x, shift_y) shifts = np.vstack(( shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel() )).transpose() A = anchors.shape[0] K = shifts.shape[0] all_anchors = (anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2))) all_anchors = all_anchors.reshape((K * A, 4)) return all_anchors
Classes
class Anchors (pyramid_levels=None, strides=None, sizes=None, ratios=None, scales=None)
-
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:
to
, etc.Initializes internal Module state, shared by both nn.Module and ScriptModule.
Expand source code
class Anchors(nn.Module): def __init__(self, pyramid_levels=None, strides=None, sizes=None, ratios=None, scales=None): super(Anchors, self).__init__() if pyramid_levels is None: self.pyramid_levels = [3, 4, 5, 6, 7] if strides is None: self.strides = [2 ** x for x in self.pyramid_levels] if sizes is None: self.sizes = [2 ** (x + 2) for x in self.pyramid_levels] if ratios is None: self.ratios = np.array([0.5, 1, 2]) if scales is None: self.scales = np.array([2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)]) def forward(self, image): image_shape = image.shape[2:] image_shape = np.array(image_shape) image_shapes = [(image_shape + 2 ** x - 1) // (2 ** x) for x in self.pyramid_levels] all_anchors = np.zeros((0, 4)).astype(np.float32) for idx, p in enumerate(self.pyramid_levels): anchors = generate_anchors(base_size=self.sizes[idx], ratios=self.ratios, scales=self.scales) shifted_anchors = shift(image_shapes[idx], self.strides[idx], anchors) all_anchors = np.append(all_anchors, shifted_anchors, axis=0) all_anchors = np.expand_dims(all_anchors, axis=0) anchors = torch.from_numpy(all_anchors.astype(np.float32)) if torch.cuda.is_available(): anchors = anchors.cuda() return anchors
Ancestors
- torch.nn.modules.module.Module
Methods
def forward(self, image)
-
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the :class:
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.Expand source code
def forward(self, image): image_shape = image.shape[2:] image_shape = np.array(image_shape) image_shapes = [(image_shape + 2 ** x - 1) // (2 ** x) for x in self.pyramid_levels] all_anchors = np.zeros((0, 4)).astype(np.float32) for idx, p in enumerate(self.pyramid_levels): anchors = generate_anchors(base_size=self.sizes[idx], ratios=self.ratios, scales=self.scales) shifted_anchors = shift(image_shapes[idx], self.strides[idx], anchors) all_anchors = np.append(all_anchors, shifted_anchors, axis=0) all_anchors = np.expand_dims(all_anchors, axis=0) anchors = torch.from_numpy(all_anchors.astype(np.float32)) if torch.cuda.is_available(): anchors = anchors.cuda() return anchors
class BBoxTransform (mean=None, std=None)
-
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:
to
, etc.Initializes internal Module state, shared by both nn.Module and ScriptModule.
Expand source code
class BBoxTransform(nn.Module): def __init__(self, mean=None, std=None): super(BBoxTransform, self).__init__() if mean is None: self.mean = torch.from_numpy(np.array([0, 0, 0, 0]).astype(np.float32)) else: self.mean = mean if std is None: self.std = torch.from_numpy(np.array([0.1, 0.1, 0.2, 0.2]).astype(np.float32)) else: self.std = std if torch.cuda.is_available(): self.mean = self.mean.cuda() self.std = self.std.cuda() def forward(self, boxes, deltas): widths = boxes[:, :, 2] - boxes[:, :, 0] heights = boxes[:, :, 3] - boxes[:, :, 1] ctr_x = boxes[:, :, 0] + 0.5 * widths ctr_y = boxes[:, :, 1] + 0.5 * heights dx = deltas[:, :, 0] * self.std[0] + self.mean[0] dy = deltas[:, :, 1] * self.std[1] + self.mean[1] dw = deltas[:, :, 2] * self.std[2] + self.mean[2] dh = deltas[:, :, 3] * self.std[3] + self.mean[3] pred_ctr_x = ctr_x + dx * widths pred_ctr_y = ctr_y + dy * heights pred_w = torch.exp(dw) * widths pred_h = torch.exp(dh) * heights pred_boxes_x1 = pred_ctr_x - 0.5 * pred_w pred_boxes_y1 = pred_ctr_y - 0.5 * pred_h pred_boxes_x2 = pred_ctr_x + 0.5 * pred_w pred_boxes_y2 = pred_ctr_y + 0.5 * pred_h pred_boxes = torch.stack([pred_boxes_x1, pred_boxes_y1, pred_boxes_x2, pred_boxes_y2], dim=2) return pred_boxes
Ancestors
- torch.nn.modules.module.Module
Methods
def forward(self, boxes, deltas)
-
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the :class:
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.Expand source code
def forward(self, boxes, deltas): widths = boxes[:, :, 2] - boxes[:, :, 0] heights = boxes[:, :, 3] - boxes[:, :, 1] ctr_x = boxes[:, :, 0] + 0.5 * widths ctr_y = boxes[:, :, 1] + 0.5 * heights dx = deltas[:, :, 0] * self.std[0] + self.mean[0] dy = deltas[:, :, 1] * self.std[1] + self.mean[1] dw = deltas[:, :, 2] * self.std[2] + self.mean[2] dh = deltas[:, :, 3] * self.std[3] + self.mean[3] pred_ctr_x = ctr_x + dx * widths pred_ctr_y = ctr_y + dy * heights pred_w = torch.exp(dw) * widths pred_h = torch.exp(dh) * heights pred_boxes_x1 = pred_ctr_x - 0.5 * pred_w pred_boxes_y1 = pred_ctr_y - 0.5 * pred_h pred_boxes_x2 = pred_ctr_x + 0.5 * pred_w pred_boxes_y2 = pred_ctr_y + 0.5 * pred_h pred_boxes = torch.stack([pred_boxes_x1, pred_boxes_y1, pred_boxes_x2, pred_boxes_y2], dim=2) return pred_boxes
class ClipBoxes
-
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:
to
, etc.Initializes internal Module state, shared by both nn.Module and ScriptModule.
Expand source code
class ClipBoxes(nn.Module): def __init__(self): super(ClipBoxes, self).__init__() def forward(self, boxes, img): batch_size, num_channels, height, width = img.shape boxes[:, :, 0] = torch.clamp(boxes[:, :, 0], min=0) boxes[:, :, 1] = torch.clamp(boxes[:, :, 1], min=0) boxes[:, :, 2] = torch.clamp(boxes[:, :, 2], max=width) boxes[:, :, 3] = torch.clamp(boxes[:, :, 3], max=height) return boxes
Ancestors
- torch.nn.modules.module.Module
Methods
def forward(self, boxes, img)
-
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the :class:
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.Expand source code
def forward(self, boxes, img): batch_size, num_channels, height, width = img.shape boxes[:, :, 0] = torch.clamp(boxes[:, :, 0], min=0) boxes[:, :, 1] = torch.clamp(boxes[:, :, 1], min=0) boxes[:, :, 2] = torch.clamp(boxes[:, :, 2], max=width) boxes[:, :, 3] = torch.clamp(boxes[:, :, 3], max=height) return boxes