Module 4_efficientdet.lib.src.utils

Expand source code
import torch
import torch.nn as nn
import numpy as np


class BBoxTransform(nn.Module):

    def __init__(self, mean=None, std=None):
        super(BBoxTransform, self).__init__()
        if mean is None:
            self.mean = torch.from_numpy(np.array([0, 0, 0, 0]).astype(np.float32))
        else:
            self.mean = mean
        if std is None:
            self.std = torch.from_numpy(np.array([0.1, 0.1, 0.2, 0.2]).astype(np.float32))
        else:
            self.std = std
        if torch.cuda.is_available():
            self.mean = self.mean.cuda()
            self.std = self.std.cuda()

    def forward(self, boxes, deltas):

        widths = boxes[:, :, 2] - boxes[:, :, 0]
        heights = boxes[:, :, 3] - boxes[:, :, 1]
        ctr_x = boxes[:, :, 0] + 0.5 * widths
        ctr_y = boxes[:, :, 1] + 0.5 * heights

        dx = deltas[:, :, 0] * self.std[0] + self.mean[0]
        dy = deltas[:, :, 1] * self.std[1] + self.mean[1]
        dw = deltas[:, :, 2] * self.std[2] + self.mean[2]
        dh = deltas[:, :, 3] * self.std[3] + self.mean[3]

        pred_ctr_x = ctr_x + dx * widths
        pred_ctr_y = ctr_y + dy * heights
        pred_w = torch.exp(dw) * widths
        pred_h = torch.exp(dh) * heights

        pred_boxes_x1 = pred_ctr_x - 0.5 * pred_w
        pred_boxes_y1 = pred_ctr_y - 0.5 * pred_h
        pred_boxes_x2 = pred_ctr_x + 0.5 * pred_w
        pred_boxes_y2 = pred_ctr_y + 0.5 * pred_h

        pred_boxes = torch.stack([pred_boxes_x1, pred_boxes_y1, pred_boxes_x2, pred_boxes_y2], dim=2)

        return pred_boxes


class ClipBoxes(nn.Module):

    def __init__(self):
        super(ClipBoxes, self).__init__()

    def forward(self, boxes, img):
        batch_size, num_channels, height, width = img.shape

        boxes[:, :, 0] = torch.clamp(boxes[:, :, 0], min=0)
        boxes[:, :, 1] = torch.clamp(boxes[:, :, 1], min=0)

        boxes[:, :, 2] = torch.clamp(boxes[:, :, 2], max=width)
        boxes[:, :, 3] = torch.clamp(boxes[:, :, 3], max=height)

        return boxes


class Anchors(nn.Module):
    def __init__(self, pyramid_levels=None, strides=None, sizes=None, ratios=None, scales=None):
        super(Anchors, self).__init__()

        if pyramid_levels is None:
            self.pyramid_levels = [3, 4, 5, 6, 7]
        if strides is None:
            self.strides = [2 ** x for x in self.pyramid_levels]
        if sizes is None:
            self.sizes = [2 ** (x + 2) for x in self.pyramid_levels]
        if ratios is None:
            self.ratios = np.array([0.5, 1, 2])
        if scales is None:
            self.scales = np.array([2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)])

    def forward(self, image):

        image_shape = image.shape[2:]
        image_shape = np.array(image_shape)
        image_shapes = [(image_shape + 2 ** x - 1) // (2 ** x) for x in self.pyramid_levels]

        all_anchors = np.zeros((0, 4)).astype(np.float32)

        for idx, p in enumerate(self.pyramid_levels):
            anchors = generate_anchors(base_size=self.sizes[idx], ratios=self.ratios, scales=self.scales)
            shifted_anchors = shift(image_shapes[idx], self.strides[idx], anchors)
            all_anchors = np.append(all_anchors, shifted_anchors, axis=0)

        all_anchors = np.expand_dims(all_anchors, axis=0)

        anchors = torch.from_numpy(all_anchors.astype(np.float32))
        if torch.cuda.is_available():
            anchors = anchors.cuda()
        return anchors


def generate_anchors(base_size=16, ratios=None, scales=None):
    if ratios is None:
        ratios = np.array([0.5, 1, 2])

    if scales is None:
        scales = np.array([2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)])

    num_anchors = len(ratios) * len(scales)
    anchors = np.zeros((num_anchors, 4))
    anchors[:, 2:] = base_size * np.tile(scales, (2, len(ratios))).T
    areas = anchors[:, 2] * anchors[:, 3]
    anchors[:, 2] = np.sqrt(areas / np.repeat(ratios, len(scales)))
    anchors[:, 3] = anchors[:, 2] * np.repeat(ratios, len(scales))
    anchors[:, 0::2] -= np.tile(anchors[:, 2] * 0.5, (2, 1)).T
    anchors[:, 1::2] -= np.tile(anchors[:, 3] * 0.5, (2, 1)).T

    return anchors


def compute_shape(image_shape, pyramid_levels):
    image_shape = np.array(image_shape[:2])
    image_shapes = [(image_shape + 2 ** x - 1) // (2 ** x) for x in pyramid_levels]
    return image_shapes


def shift(shape, stride, anchors):
    shift_x = (np.arange(0, shape[1]) + 0.5) * stride
    shift_y = (np.arange(0, shape[0]) + 0.5) * stride
    shift_x, shift_y = np.meshgrid(shift_x, shift_y)
    shifts = np.vstack((
        shift_x.ravel(), shift_y.ravel(),
        shift_x.ravel(), shift_y.ravel()
    )).transpose()

    A = anchors.shape[0]
    K = shifts.shape[0]
    all_anchors = (anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2)))
    all_anchors = all_anchors.reshape((K * A, 4))

    return all_anchors

Functions

def compute_shape(image_shape, pyramid_levels)
Expand source code
def compute_shape(image_shape, pyramid_levels):
    image_shape = np.array(image_shape[:2])
    image_shapes = [(image_shape + 2 ** x - 1) // (2 ** x) for x in pyramid_levels]
    return image_shapes
def generate_anchors(base_size=16, ratios=None, scales=None)
Expand source code
def generate_anchors(base_size=16, ratios=None, scales=None):
    if ratios is None:
        ratios = np.array([0.5, 1, 2])

    if scales is None:
        scales = np.array([2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)])

    num_anchors = len(ratios) * len(scales)
    anchors = np.zeros((num_anchors, 4))
    anchors[:, 2:] = base_size * np.tile(scales, (2, len(ratios))).T
    areas = anchors[:, 2] * anchors[:, 3]
    anchors[:, 2] = np.sqrt(areas / np.repeat(ratios, len(scales)))
    anchors[:, 3] = anchors[:, 2] * np.repeat(ratios, len(scales))
    anchors[:, 0::2] -= np.tile(anchors[:, 2] * 0.5, (2, 1)).T
    anchors[:, 1::2] -= np.tile(anchors[:, 3] * 0.5, (2, 1)).T

    return anchors
def shift(shape, stride, anchors)
Expand source code
def shift(shape, stride, anchors):
    shift_x = (np.arange(0, shape[1]) + 0.5) * stride
    shift_y = (np.arange(0, shape[0]) + 0.5) * stride
    shift_x, shift_y = np.meshgrid(shift_x, shift_y)
    shifts = np.vstack((
        shift_x.ravel(), shift_y.ravel(),
        shift_x.ravel(), shift_y.ravel()
    )).transpose()

    A = anchors.shape[0]
    K = shifts.shape[0]
    all_anchors = (anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2)))
    all_anchors = all_anchors.reshape((K * A, 4))

    return all_anchors

Classes

class Anchors (pyramid_levels=None, strides=None, sizes=None, ratios=None, scales=None)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class Anchors(nn.Module):
    def __init__(self, pyramid_levels=None, strides=None, sizes=None, ratios=None, scales=None):
        super(Anchors, self).__init__()

        if pyramid_levels is None:
            self.pyramid_levels = [3, 4, 5, 6, 7]
        if strides is None:
            self.strides = [2 ** x for x in self.pyramid_levels]
        if sizes is None:
            self.sizes = [2 ** (x + 2) for x in self.pyramid_levels]
        if ratios is None:
            self.ratios = np.array([0.5, 1, 2])
        if scales is None:
            self.scales = np.array([2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)])

    def forward(self, image):

        image_shape = image.shape[2:]
        image_shape = np.array(image_shape)
        image_shapes = [(image_shape + 2 ** x - 1) // (2 ** x) for x in self.pyramid_levels]

        all_anchors = np.zeros((0, 4)).astype(np.float32)

        for idx, p in enumerate(self.pyramid_levels):
            anchors = generate_anchors(base_size=self.sizes[idx], ratios=self.ratios, scales=self.scales)
            shifted_anchors = shift(image_shapes[idx], self.strides[idx], anchors)
            all_anchors = np.append(all_anchors, shifted_anchors, axis=0)

        all_anchors = np.expand_dims(all_anchors, axis=0)

        anchors = torch.from_numpy(all_anchors.astype(np.float32))
        if torch.cuda.is_available():
            anchors = anchors.cuda()
        return anchors

Ancestors

  • torch.nn.modules.module.Module

Methods

def forward(self, image)

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

Expand source code
def forward(self, image):

    image_shape = image.shape[2:]
    image_shape = np.array(image_shape)
    image_shapes = [(image_shape + 2 ** x - 1) // (2 ** x) for x in self.pyramid_levels]

    all_anchors = np.zeros((0, 4)).astype(np.float32)

    for idx, p in enumerate(self.pyramid_levels):
        anchors = generate_anchors(base_size=self.sizes[idx], ratios=self.ratios, scales=self.scales)
        shifted_anchors = shift(image_shapes[idx], self.strides[idx], anchors)
        all_anchors = np.append(all_anchors, shifted_anchors, axis=0)

    all_anchors = np.expand_dims(all_anchors, axis=0)

    anchors = torch.from_numpy(all_anchors.astype(np.float32))
    if torch.cuda.is_available():
        anchors = anchors.cuda()
    return anchors
class BBoxTransform (mean=None, std=None)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class BBoxTransform(nn.Module):

    def __init__(self, mean=None, std=None):
        super(BBoxTransform, self).__init__()
        if mean is None:
            self.mean = torch.from_numpy(np.array([0, 0, 0, 0]).astype(np.float32))
        else:
            self.mean = mean
        if std is None:
            self.std = torch.from_numpy(np.array([0.1, 0.1, 0.2, 0.2]).astype(np.float32))
        else:
            self.std = std
        if torch.cuda.is_available():
            self.mean = self.mean.cuda()
            self.std = self.std.cuda()

    def forward(self, boxes, deltas):

        widths = boxes[:, :, 2] - boxes[:, :, 0]
        heights = boxes[:, :, 3] - boxes[:, :, 1]
        ctr_x = boxes[:, :, 0] + 0.5 * widths
        ctr_y = boxes[:, :, 1] + 0.5 * heights

        dx = deltas[:, :, 0] * self.std[0] + self.mean[0]
        dy = deltas[:, :, 1] * self.std[1] + self.mean[1]
        dw = deltas[:, :, 2] * self.std[2] + self.mean[2]
        dh = deltas[:, :, 3] * self.std[3] + self.mean[3]

        pred_ctr_x = ctr_x + dx * widths
        pred_ctr_y = ctr_y + dy * heights
        pred_w = torch.exp(dw) * widths
        pred_h = torch.exp(dh) * heights

        pred_boxes_x1 = pred_ctr_x - 0.5 * pred_w
        pred_boxes_y1 = pred_ctr_y - 0.5 * pred_h
        pred_boxes_x2 = pred_ctr_x + 0.5 * pred_w
        pred_boxes_y2 = pred_ctr_y + 0.5 * pred_h

        pred_boxes = torch.stack([pred_boxes_x1, pred_boxes_y1, pred_boxes_x2, pred_boxes_y2], dim=2)

        return pred_boxes

Ancestors

  • torch.nn.modules.module.Module

Methods

def forward(self, boxes, deltas)

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

Expand source code
def forward(self, boxes, deltas):

    widths = boxes[:, :, 2] - boxes[:, :, 0]
    heights = boxes[:, :, 3] - boxes[:, :, 1]
    ctr_x = boxes[:, :, 0] + 0.5 * widths
    ctr_y = boxes[:, :, 1] + 0.5 * heights

    dx = deltas[:, :, 0] * self.std[0] + self.mean[0]
    dy = deltas[:, :, 1] * self.std[1] + self.mean[1]
    dw = deltas[:, :, 2] * self.std[2] + self.mean[2]
    dh = deltas[:, :, 3] * self.std[3] + self.mean[3]

    pred_ctr_x = ctr_x + dx * widths
    pred_ctr_y = ctr_y + dy * heights
    pred_w = torch.exp(dw) * widths
    pred_h = torch.exp(dh) * heights

    pred_boxes_x1 = pred_ctr_x - 0.5 * pred_w
    pred_boxes_y1 = pred_ctr_y - 0.5 * pred_h
    pred_boxes_x2 = pred_ctr_x + 0.5 * pred_w
    pred_boxes_y2 = pred_ctr_y + 0.5 * pred_h

    pred_boxes = torch.stack([pred_boxes_x1, pred_boxes_y1, pred_boxes_x2, pred_boxes_y2], dim=2)

    return pred_boxes
class ClipBoxes

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class ClipBoxes(nn.Module):

    def __init__(self):
        super(ClipBoxes, self).__init__()

    def forward(self, boxes, img):
        batch_size, num_channels, height, width = img.shape

        boxes[:, :, 0] = torch.clamp(boxes[:, :, 0], min=0)
        boxes[:, :, 1] = torch.clamp(boxes[:, :, 1], min=0)

        boxes[:, :, 2] = torch.clamp(boxes[:, :, 2], max=width)
        boxes[:, :, 3] = torch.clamp(boxes[:, :, 3], max=height)

        return boxes

Ancestors

  • torch.nn.modules.module.Module

Methods

def forward(self, boxes, img)

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

Expand source code
def forward(self, boxes, img):
    batch_size, num_channels, height, width = img.shape

    boxes[:, :, 0] = torch.clamp(boxes[:, :, 0], min=0)
    boxes[:, :, 1] = torch.clamp(boxes[:, :, 1], min=0)

    boxes[:, :, 2] = torch.clamp(boxes[:, :, 2], max=width)
    boxes[:, :, 3] = torch.clamp(boxes[:, :, 3], max=height)

    return boxes