Module 4_efficientdet.lib.src.model
Expand source code
import torch.nn as nn
import torch
import math
from efficientnet_pytorch import EfficientNet as EffNet
from src.utils import BBoxTransform, ClipBoxes, Anchors
from src.loss import FocalLoss
from torchvision.ops.boxes import nms as nms_torch
def nms(dets, thresh):
return nms_torch(dets[:, :4], dets[:, 4], thresh)
class ConvBlock(nn.Module):
def __init__(self, num_channels):
super(ConvBlock, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1, groups=num_channels),
nn.Conv2d(num_channels, num_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(num_features=num_channels, momentum=0.9997, eps=4e-5), nn.ReLU())
def forward(self, input):
return self.conv(input)
class BiFPN(nn.Module):
def __init__(self, num_channels, epsilon=1e-4):
super(BiFPN, self).__init__()
self.epsilon = epsilon
# Conv layers
self.conv6_up = ConvBlock(num_channels)
self.conv5_up = ConvBlock(num_channels)
self.conv4_up = ConvBlock(num_channels)
self.conv3_up = ConvBlock(num_channels)
self.conv4_down = ConvBlock(num_channels)
self.conv5_down = ConvBlock(num_channels)
self.conv6_down = ConvBlock(num_channels)
self.conv7_down = ConvBlock(num_channels)
# Feature scaling layers
self.p6_upsample = nn.Upsample(scale_factor=2, mode='nearest')
self.p5_upsample = nn.Upsample(scale_factor=2, mode='nearest')
self.p4_upsample = nn.Upsample(scale_factor=2, mode='nearest')
self.p3_upsample = nn.Upsample(scale_factor=2, mode='nearest')
self.p4_downsample = nn.MaxPool2d(kernel_size=2)
self.p5_downsample = nn.MaxPool2d(kernel_size=2)
self.p6_downsample = nn.MaxPool2d(kernel_size=2)
self.p7_downsample = nn.MaxPool2d(kernel_size=2)
# Weight
self.p6_w1 = nn.Parameter(torch.ones(2))
self.p6_w1_relu = nn.ReLU()
self.p5_w1 = nn.Parameter(torch.ones(2))
self.p5_w1_relu = nn.ReLU()
self.p4_w1 = nn.Parameter(torch.ones(2))
self.p4_w1_relu = nn.ReLU()
self.p3_w1 = nn.Parameter(torch.ones(2))
self.p3_w1_relu = nn.ReLU()
self.p4_w2 = nn.Parameter(torch.ones(3))
self.p4_w2_relu = nn.ReLU()
self.p5_w2 = nn.Parameter(torch.ones(3))
self.p5_w2_relu = nn.ReLU()
self.p6_w2 = nn.Parameter(torch.ones(3))
self.p6_w2_relu = nn.ReLU()
self.p7_w2 = nn.Parameter(torch.ones(2))
self.p7_w2_relu = nn.ReLU()
def forward(self, inputs):
"""
P7_0 -------------------------- P7_2 -------->
P6_0 ---------- P6_1 ---------- P6_2 -------->
P5_0 ---------- P5_1 ---------- P5_2 -------->
P4_0 ---------- P4_1 ---------- P4_2 -------->
P3_0 -------------------------- P3_2 -------->
"""
# P3_0, P4_0, P5_0, P6_0 and P7_0
p3_in, p4_in, p5_in, p6_in, p7_in = inputs
# P7_0 to P7_2
# Weights for P6_0 and P7_0 to P6_1
p6_w1 = self.p6_w1_relu(self.p6_w1)
weight = p6_w1 / (torch.sum(p6_w1, dim=0) + self.epsilon)
# Connections for P6_0 and P7_0 to P6_1 respectively
p6_up = self.conv6_up(weight[0] * p6_in + weight[1] * self.p6_upsample(p7_in))
# Weights for P5_0 and P6_0 to P5_1
p5_w1 = self.p5_w1_relu(self.p5_w1)
weight = p5_w1 / (torch.sum(p5_w1, dim=0) + self.epsilon)
# Connections for P5_0 and P6_0 to P5_1 respectively
p5_up = self.conv5_up(weight[0] * p5_in + weight[1] * self.p5_upsample(p6_up))
# Weights for P4_0 and P5_0 to P4_1
p4_w1 = self.p4_w1_relu(self.p4_w1)
weight = p4_w1 / (torch.sum(p4_w1, dim=0) + self.epsilon)
# Connections for P4_0 and P5_0 to P4_1 respectively
p4_up = self.conv4_up(weight[0] * p4_in + weight[1] * self.p4_upsample(p5_up))
# Weights for P3_0 and P4_1 to P3_2
p3_w1 = self.p3_w1_relu(self.p3_w1)
weight = p3_w1 / (torch.sum(p3_w1, dim=0) + self.epsilon)
# Connections for P3_0 and P4_1 to P3_2 respectively
p3_out = self.conv3_up(weight[0] * p3_in + weight[1] * self.p3_upsample(p4_up))
# Weights for P4_0, P4_1 and P3_2 to P4_2
p4_w2 = self.p4_w2_relu(self.p4_w2)
weight = p4_w2 / (torch.sum(p4_w2, dim=0) + self.epsilon)
# Connections for P4_0, P4_1 and P3_2 to P4_2 respectively
p4_out = self.conv4_down(
weight[0] * p4_in + weight[1] * p4_up + weight[2] * self.p4_downsample(p3_out))
# Weights for P5_0, P5_1 and P4_2 to P5_2
p5_w2 = self.p5_w2_relu(self.p5_w2)
weight = p5_w2 / (torch.sum(p5_w2, dim=0) + self.epsilon)
# Connections for P5_0, P5_1 and P4_2 to P5_2 respectively
p5_out = self.conv5_down(
weight[0] * p5_in + weight[1] * p5_up + weight[2] * self.p5_downsample(p4_out))
# Weights for P6_0, P6_1 and P5_2 to P6_2
p6_w2 = self.p6_w2_relu(self.p6_w2)
weight = p6_w2 / (torch.sum(p6_w2, dim=0) + self.epsilon)
# Connections for P6_0, P6_1 and P5_2 to P6_2 respectively
p6_out = self.conv6_down(
weight[0] * p6_in + weight[1] * p6_up + weight[2] * self.p6_downsample(p5_out))
# Weights for P7_0 and P6_2 to P7_2
p7_w2 = self.p7_w2_relu(self.p7_w2)
weight = p7_w2 / (torch.sum(p7_w2, dim=0) + self.epsilon)
# Connections for P7_0 and P6_2 to P7_2
p7_out = self.conv7_down(weight[0] * p7_in + weight[1] * self.p7_downsample(p6_out))
return p3_out, p4_out, p5_out, p6_out, p7_out
class Regressor(nn.Module):
def __init__(self, in_channels, num_anchors, num_layers):
super(Regressor, self).__init__()
layers = []
for _ in range(num_layers):
layers.append(nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1))
layers.append(nn.ReLU(True))
self.layers = nn.Sequential(*layers)
self.header = nn.Conv2d(in_channels, num_anchors * 4, kernel_size=3, stride=1, padding=1)
def forward(self, inputs):
inputs = self.layers(inputs)
inputs = self.header(inputs)
output = inputs.permute(0, 2, 3, 1)
return output.contiguous().view(output.shape[0], -1, 4)
class Classifier(nn.Module):
def __init__(self, in_channels, num_anchors, num_classes, num_layers):
super(Classifier, self).__init__()
self.num_anchors = num_anchors
self.num_classes = num_classes
layers = []
for _ in range(num_layers):
layers.append(nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1))
layers.append(nn.ReLU(True))
self.layers = nn.Sequential(*layers)
self.header = nn.Conv2d(in_channels, num_anchors * num_classes, kernel_size=3, stride=1, padding=1)
self.act = nn.Sigmoid()
def forward(self, inputs):
inputs = self.layers(inputs)
inputs = self.header(inputs)
inputs = self.act(inputs)
inputs = inputs.permute(0, 2, 3, 1)
output = inputs.contiguous().view(inputs.shape[0], inputs.shape[1], inputs.shape[2], self.num_anchors,
self.num_classes)
return output.contiguous().view(output.shape[0], -1, self.num_classes)
class EfficientNet(nn.Module):
def __init__(self, ):
super(EfficientNet, self).__init__()
model = EffNet.from_pretrained('efficientnet-b0')
del model._conv_head
del model._bn1
del model._avg_pooling
del model._dropout
del model._fc
self.model = model
def forward(self, x):
x = self.model._swish(self.model._bn0(self.model._conv_stem(x)))
feature_maps = []
for idx, block in enumerate(self.model._blocks):
drop_connect_rate = self.model._global_params.drop_connect_rate
if drop_connect_rate:
drop_connect_rate *= float(idx) / len(self.model._blocks)
x = block(x, drop_connect_rate=drop_connect_rate)
if block._depthwise_conv.stride == [2, 2]:
feature_maps.append(x)
return feature_maps[1:]
class EfficientDet(nn.Module):
def __init__(self, num_anchors=9, num_classes=20, compound_coef=0):
super(EfficientDet, self).__init__()
self.compound_coef = compound_coef
self.num_channels = [64, 88, 112, 160, 224, 288, 384, 384][self.compound_coef]
self.conv3 = nn.Conv2d(40, self.num_channels, kernel_size=1, stride=1, padding=0)
self.conv4 = nn.Conv2d(80, self.num_channels, kernel_size=1, stride=1, padding=0)
self.conv5 = nn.Conv2d(192, self.num_channels, kernel_size=1, stride=1, padding=0)
self.conv6 = nn.Conv2d(192, self.num_channels, kernel_size=3, stride=2, padding=1)
self.conv7 = nn.Sequential(nn.ReLU(),
nn.Conv2d(self.num_channels, self.num_channels, kernel_size=3, stride=2, padding=1))
self.bifpn = nn.Sequential(*[BiFPN(self.num_channels) for _ in range(min(2 + self.compound_coef, 8))])
self.num_classes = num_classes
self.regressor = Regressor(in_channels=self.num_channels, num_anchors=num_anchors,
num_layers=3 + self.compound_coef // 3)
self.classifier = Classifier(in_channels=self.num_channels, num_anchors=num_anchors, num_classes=num_classes,
num_layers=3 + self.compound_coef // 3)
self.anchors = Anchors()
self.regressBoxes = BBoxTransform()
self.clipBoxes = ClipBoxes()
self.focalLoss = FocalLoss()
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
prior = 0.01
self.classifier.header.weight.data.fill_(0)
self.classifier.header.bias.data.fill_(-math.log((1.0 - prior) / prior))
self.regressor.header.weight.data.fill_(0)
self.regressor.header.bias.data.fill_(0)
self.backbone_net = EfficientNet()
def freeze_bn(self):
for m in self.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
def forward(self, inputs):
if len(inputs) == 2:
is_training = True
img_batch, annotations = inputs
else:
is_training = False
img_batch = inputs
c3, c4, c5 = self.backbone_net(img_batch)
p3 = self.conv3(c3)
p4 = self.conv4(c4)
p5 = self.conv5(c5)
p6 = self.conv6(c5)
p7 = self.conv7(p6)
features = [p3, p4, p5, p6, p7]
features = self.bifpn(features)
regression = torch.cat([self.regressor(feature) for feature in features], dim=1)
classification = torch.cat([self.classifier(feature) for feature in features], dim=1)
anchors = self.anchors(img_batch)
if is_training:
return self.focalLoss(classification, regression, anchors, annotations)
else:
transformed_anchors = self.regressBoxes(anchors, regression)
transformed_anchors = self.clipBoxes(transformed_anchors, img_batch)
scores = torch.max(classification, dim=2, keepdim=True)[0]
scores_over_thresh = (scores > 0.05)[0, :, 0]
if scores_over_thresh.sum() == 0:
return [torch.zeros(0), torch.zeros(0), torch.zeros(0, 4)]
classification = classification[:, scores_over_thresh, :]
transformed_anchors = transformed_anchors[:, scores_over_thresh, :]
scores = scores[:, scores_over_thresh, :]
anchors_nms_idx = nms(torch.cat([transformed_anchors, scores], dim=2)[0, :, :], 0.5)
nms_scores, nms_class = classification[0, anchors_nms_idx, :].max(dim=1)
return [nms_scores, nms_class, transformed_anchors[0, anchors_nms_idx, :]]
if __name__ == '__main__':
from tensorboardX import SummaryWriter
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
model = EfficientDet(num_classes=80)
print (count_parameters(model))
Functions
def nms(dets, thresh)
-
Expand source code
def nms(dets, thresh): return nms_torch(dets[:, :4], dets[:, 4], thresh)
Classes
class BiFPN (num_channels, epsilon=0.0001)
-
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:
to
, etc.Initializes internal Module state, shared by both nn.Module and ScriptModule.
Expand source code
class BiFPN(nn.Module): def __init__(self, num_channels, epsilon=1e-4): super(BiFPN, self).__init__() self.epsilon = epsilon # Conv layers self.conv6_up = ConvBlock(num_channels) self.conv5_up = ConvBlock(num_channels) self.conv4_up = ConvBlock(num_channels) self.conv3_up = ConvBlock(num_channels) self.conv4_down = ConvBlock(num_channels) self.conv5_down = ConvBlock(num_channels) self.conv6_down = ConvBlock(num_channels) self.conv7_down = ConvBlock(num_channels) # Feature scaling layers self.p6_upsample = nn.Upsample(scale_factor=2, mode='nearest') self.p5_upsample = nn.Upsample(scale_factor=2, mode='nearest') self.p4_upsample = nn.Upsample(scale_factor=2, mode='nearest') self.p3_upsample = nn.Upsample(scale_factor=2, mode='nearest') self.p4_downsample = nn.MaxPool2d(kernel_size=2) self.p5_downsample = nn.MaxPool2d(kernel_size=2) self.p6_downsample = nn.MaxPool2d(kernel_size=2) self.p7_downsample = nn.MaxPool2d(kernel_size=2) # Weight self.p6_w1 = nn.Parameter(torch.ones(2)) self.p6_w1_relu = nn.ReLU() self.p5_w1 = nn.Parameter(torch.ones(2)) self.p5_w1_relu = nn.ReLU() self.p4_w1 = nn.Parameter(torch.ones(2)) self.p4_w1_relu = nn.ReLU() self.p3_w1 = nn.Parameter(torch.ones(2)) self.p3_w1_relu = nn.ReLU() self.p4_w2 = nn.Parameter(torch.ones(3)) self.p4_w2_relu = nn.ReLU() self.p5_w2 = nn.Parameter(torch.ones(3)) self.p5_w2_relu = nn.ReLU() self.p6_w2 = nn.Parameter(torch.ones(3)) self.p6_w2_relu = nn.ReLU() self.p7_w2 = nn.Parameter(torch.ones(2)) self.p7_w2_relu = nn.ReLU() def forward(self, inputs): """ P7_0 -------------------------- P7_2 --------> P6_0 ---------- P6_1 ---------- P6_2 --------> P5_0 ---------- P5_1 ---------- P5_2 --------> P4_0 ---------- P4_1 ---------- P4_2 --------> P3_0 -------------------------- P3_2 --------> """ # P3_0, P4_0, P5_0, P6_0 and P7_0 p3_in, p4_in, p5_in, p6_in, p7_in = inputs # P7_0 to P7_2 # Weights for P6_0 and P7_0 to P6_1 p6_w1 = self.p6_w1_relu(self.p6_w1) weight = p6_w1 / (torch.sum(p6_w1, dim=0) + self.epsilon) # Connections for P6_0 and P7_0 to P6_1 respectively p6_up = self.conv6_up(weight[0] * p6_in + weight[1] * self.p6_upsample(p7_in)) # Weights for P5_0 and P6_0 to P5_1 p5_w1 = self.p5_w1_relu(self.p5_w1) weight = p5_w1 / (torch.sum(p5_w1, dim=0) + self.epsilon) # Connections for P5_0 and P6_0 to P5_1 respectively p5_up = self.conv5_up(weight[0] * p5_in + weight[1] * self.p5_upsample(p6_up)) # Weights for P4_0 and P5_0 to P4_1 p4_w1 = self.p4_w1_relu(self.p4_w1) weight = p4_w1 / (torch.sum(p4_w1, dim=0) + self.epsilon) # Connections for P4_0 and P5_0 to P4_1 respectively p4_up = self.conv4_up(weight[0] * p4_in + weight[1] * self.p4_upsample(p5_up)) # Weights for P3_0 and P4_1 to P3_2 p3_w1 = self.p3_w1_relu(self.p3_w1) weight = p3_w1 / (torch.sum(p3_w1, dim=0) + self.epsilon) # Connections for P3_0 and P4_1 to P3_2 respectively p3_out = self.conv3_up(weight[0] * p3_in + weight[1] * self.p3_upsample(p4_up)) # Weights for P4_0, P4_1 and P3_2 to P4_2 p4_w2 = self.p4_w2_relu(self.p4_w2) weight = p4_w2 / (torch.sum(p4_w2, dim=0) + self.epsilon) # Connections for P4_0, P4_1 and P3_2 to P4_2 respectively p4_out = self.conv4_down( weight[0] * p4_in + weight[1] * p4_up + weight[2] * self.p4_downsample(p3_out)) # Weights for P5_0, P5_1 and P4_2 to P5_2 p5_w2 = self.p5_w2_relu(self.p5_w2) weight = p5_w2 / (torch.sum(p5_w2, dim=0) + self.epsilon) # Connections for P5_0, P5_1 and P4_2 to P5_2 respectively p5_out = self.conv5_down( weight[0] * p5_in + weight[1] * p5_up + weight[2] * self.p5_downsample(p4_out)) # Weights for P6_0, P6_1 and P5_2 to P6_2 p6_w2 = self.p6_w2_relu(self.p6_w2) weight = p6_w2 / (torch.sum(p6_w2, dim=0) + self.epsilon) # Connections for P6_0, P6_1 and P5_2 to P6_2 respectively p6_out = self.conv6_down( weight[0] * p6_in + weight[1] * p6_up + weight[2] * self.p6_downsample(p5_out)) # Weights for P7_0 and P6_2 to P7_2 p7_w2 = self.p7_w2_relu(self.p7_w2) weight = p7_w2 / (torch.sum(p7_w2, dim=0) + self.epsilon) # Connections for P7_0 and P6_2 to P7_2 p7_out = self.conv7_down(weight[0] * p7_in + weight[1] * self.p7_downsample(p6_out)) return p3_out, p4_out, p5_out, p6_out, p7_out
Ancestors
- torch.nn.modules.module.Module
Methods
def forward(self, inputs)
-
P7_0 -------------------------- P7_2 -------->
P6_0 ---------- P6_1 ---------- P6_2 -------->
P5_0 ---------- P5_1 ---------- P5_2 -------->
P4_0 ---------- P4_1 ---------- P4_2 -------->
P3_0 -------------------------- P3_2 -------->
Expand source code
def forward(self, inputs): """ P7_0 -------------------------- P7_2 --------> P6_0 ---------- P6_1 ---------- P6_2 --------> P5_0 ---------- P5_1 ---------- P5_2 --------> P4_0 ---------- P4_1 ---------- P4_2 --------> P3_0 -------------------------- P3_2 --------> """ # P3_0, P4_0, P5_0, P6_0 and P7_0 p3_in, p4_in, p5_in, p6_in, p7_in = inputs # P7_0 to P7_2 # Weights for P6_0 and P7_0 to P6_1 p6_w1 = self.p6_w1_relu(self.p6_w1) weight = p6_w1 / (torch.sum(p6_w1, dim=0) + self.epsilon) # Connections for P6_0 and P7_0 to P6_1 respectively p6_up = self.conv6_up(weight[0] * p6_in + weight[1] * self.p6_upsample(p7_in)) # Weights for P5_0 and P6_0 to P5_1 p5_w1 = self.p5_w1_relu(self.p5_w1) weight = p5_w1 / (torch.sum(p5_w1, dim=0) + self.epsilon) # Connections for P5_0 and P6_0 to P5_1 respectively p5_up = self.conv5_up(weight[0] * p5_in + weight[1] * self.p5_upsample(p6_up)) # Weights for P4_0 and P5_0 to P4_1 p4_w1 = self.p4_w1_relu(self.p4_w1) weight = p4_w1 / (torch.sum(p4_w1, dim=0) + self.epsilon) # Connections for P4_0 and P5_0 to P4_1 respectively p4_up = self.conv4_up(weight[0] * p4_in + weight[1] * self.p4_upsample(p5_up)) # Weights for P3_0 and P4_1 to P3_2 p3_w1 = self.p3_w1_relu(self.p3_w1) weight = p3_w1 / (torch.sum(p3_w1, dim=0) + self.epsilon) # Connections for P3_0 and P4_1 to P3_2 respectively p3_out = self.conv3_up(weight[0] * p3_in + weight[1] * self.p3_upsample(p4_up)) # Weights for P4_0, P4_1 and P3_2 to P4_2 p4_w2 = self.p4_w2_relu(self.p4_w2) weight = p4_w2 / (torch.sum(p4_w2, dim=0) + self.epsilon) # Connections for P4_0, P4_1 and P3_2 to P4_2 respectively p4_out = self.conv4_down( weight[0] * p4_in + weight[1] * p4_up + weight[2] * self.p4_downsample(p3_out)) # Weights for P5_0, P5_1 and P4_2 to P5_2 p5_w2 = self.p5_w2_relu(self.p5_w2) weight = p5_w2 / (torch.sum(p5_w2, dim=0) + self.epsilon) # Connections for P5_0, P5_1 and P4_2 to P5_2 respectively p5_out = self.conv5_down( weight[0] * p5_in + weight[1] * p5_up + weight[2] * self.p5_downsample(p4_out)) # Weights for P6_0, P6_1 and P5_2 to P6_2 p6_w2 = self.p6_w2_relu(self.p6_w2) weight = p6_w2 / (torch.sum(p6_w2, dim=0) + self.epsilon) # Connections for P6_0, P6_1 and P5_2 to P6_2 respectively p6_out = self.conv6_down( weight[0] * p6_in + weight[1] * p6_up + weight[2] * self.p6_downsample(p5_out)) # Weights for P7_0 and P6_2 to P7_2 p7_w2 = self.p7_w2_relu(self.p7_w2) weight = p7_w2 / (torch.sum(p7_w2, dim=0) + self.epsilon) # Connections for P7_0 and P6_2 to P7_2 p7_out = self.conv7_down(weight[0] * p7_in + weight[1] * self.p7_downsample(p6_out)) return p3_out, p4_out, p5_out, p6_out, p7_out
class Classifier (in_channels, num_anchors, num_classes, num_layers)
-
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:
to
, etc.Initializes internal Module state, shared by both nn.Module and ScriptModule.
Expand source code
class Classifier(nn.Module): def __init__(self, in_channels, num_anchors, num_classes, num_layers): super(Classifier, self).__init__() self.num_anchors = num_anchors self.num_classes = num_classes layers = [] for _ in range(num_layers): layers.append(nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)) layers.append(nn.ReLU(True)) self.layers = nn.Sequential(*layers) self.header = nn.Conv2d(in_channels, num_anchors * num_classes, kernel_size=3, stride=1, padding=1) self.act = nn.Sigmoid() def forward(self, inputs): inputs = self.layers(inputs) inputs = self.header(inputs) inputs = self.act(inputs) inputs = inputs.permute(0, 2, 3, 1) output = inputs.contiguous().view(inputs.shape[0], inputs.shape[1], inputs.shape[2], self.num_anchors, self.num_classes) return output.contiguous().view(output.shape[0], -1, self.num_classes)
Ancestors
- torch.nn.modules.module.Module
Methods
def forward(self, inputs)
-
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the :class:
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.Expand source code
def forward(self, inputs): inputs = self.layers(inputs) inputs = self.header(inputs) inputs = self.act(inputs) inputs = inputs.permute(0, 2, 3, 1) output = inputs.contiguous().view(inputs.shape[0], inputs.shape[1], inputs.shape[2], self.num_anchors, self.num_classes) return output.contiguous().view(output.shape[0], -1, self.num_classes)
class ConvBlock (num_channels)
-
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:
to
, etc.Initializes internal Module state, shared by both nn.Module and ScriptModule.
Expand source code
class ConvBlock(nn.Module): def __init__(self, num_channels): super(ConvBlock, self).__init__() self.conv = nn.Sequential( nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1, groups=num_channels), nn.Conv2d(num_channels, num_channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(num_features=num_channels, momentum=0.9997, eps=4e-5), nn.ReLU()) def forward(self, input): return self.conv(input)
Ancestors
- torch.nn.modules.module.Module
Methods
def forward(self, input)
-
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the :class:
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.Expand source code
def forward(self, input): return self.conv(input)
class EfficientDet (num_anchors=9, num_classes=20, compound_coef=0)
-
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:
to
, etc.Initializes internal Module state, shared by both nn.Module and ScriptModule.
Expand source code
class EfficientDet(nn.Module): def __init__(self, num_anchors=9, num_classes=20, compound_coef=0): super(EfficientDet, self).__init__() self.compound_coef = compound_coef self.num_channels = [64, 88, 112, 160, 224, 288, 384, 384][self.compound_coef] self.conv3 = nn.Conv2d(40, self.num_channels, kernel_size=1, stride=1, padding=0) self.conv4 = nn.Conv2d(80, self.num_channels, kernel_size=1, stride=1, padding=0) self.conv5 = nn.Conv2d(192, self.num_channels, kernel_size=1, stride=1, padding=0) self.conv6 = nn.Conv2d(192, self.num_channels, kernel_size=3, stride=2, padding=1) self.conv7 = nn.Sequential(nn.ReLU(), nn.Conv2d(self.num_channels, self.num_channels, kernel_size=3, stride=2, padding=1)) self.bifpn = nn.Sequential(*[BiFPN(self.num_channels) for _ in range(min(2 + self.compound_coef, 8))]) self.num_classes = num_classes self.regressor = Regressor(in_channels=self.num_channels, num_anchors=num_anchors, num_layers=3 + self.compound_coef // 3) self.classifier = Classifier(in_channels=self.num_channels, num_anchors=num_anchors, num_classes=num_classes, num_layers=3 + self.compound_coef // 3) self.anchors = Anchors() self.regressBoxes = BBoxTransform() self.clipBoxes = ClipBoxes() self.focalLoss = FocalLoss() for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() prior = 0.01 self.classifier.header.weight.data.fill_(0) self.classifier.header.bias.data.fill_(-math.log((1.0 - prior) / prior)) self.regressor.header.weight.data.fill_(0) self.regressor.header.bias.data.fill_(0) self.backbone_net = EfficientNet() def freeze_bn(self): for m in self.modules(): if isinstance(m, nn.BatchNorm2d): m.eval() def forward(self, inputs): if len(inputs) == 2: is_training = True img_batch, annotations = inputs else: is_training = False img_batch = inputs c3, c4, c5 = self.backbone_net(img_batch) p3 = self.conv3(c3) p4 = self.conv4(c4) p5 = self.conv5(c5) p6 = self.conv6(c5) p7 = self.conv7(p6) features = [p3, p4, p5, p6, p7] features = self.bifpn(features) regression = torch.cat([self.regressor(feature) for feature in features], dim=1) classification = torch.cat([self.classifier(feature) for feature in features], dim=1) anchors = self.anchors(img_batch) if is_training: return self.focalLoss(classification, regression, anchors, annotations) else: transformed_anchors = self.regressBoxes(anchors, regression) transformed_anchors = self.clipBoxes(transformed_anchors, img_batch) scores = torch.max(classification, dim=2, keepdim=True)[0] scores_over_thresh = (scores > 0.05)[0, :, 0] if scores_over_thresh.sum() == 0: return [torch.zeros(0), torch.zeros(0), torch.zeros(0, 4)] classification = classification[:, scores_over_thresh, :] transformed_anchors = transformed_anchors[:, scores_over_thresh, :] scores = scores[:, scores_over_thresh, :] anchors_nms_idx = nms(torch.cat([transformed_anchors, scores], dim=2)[0, :, :], 0.5) nms_scores, nms_class = classification[0, anchors_nms_idx, :].max(dim=1) return [nms_scores, nms_class, transformed_anchors[0, anchors_nms_idx, :]]
Ancestors
- torch.nn.modules.module.Module
Methods
def forward(self, inputs)
-
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the :class:
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.Expand source code
def forward(self, inputs): if len(inputs) == 2: is_training = True img_batch, annotations = inputs else: is_training = False img_batch = inputs c3, c4, c5 = self.backbone_net(img_batch) p3 = self.conv3(c3) p4 = self.conv4(c4) p5 = self.conv5(c5) p6 = self.conv6(c5) p7 = self.conv7(p6) features = [p3, p4, p5, p6, p7] features = self.bifpn(features) regression = torch.cat([self.regressor(feature) for feature in features], dim=1) classification = torch.cat([self.classifier(feature) for feature in features], dim=1) anchors = self.anchors(img_batch) if is_training: return self.focalLoss(classification, regression, anchors, annotations) else: transformed_anchors = self.regressBoxes(anchors, regression) transformed_anchors = self.clipBoxes(transformed_anchors, img_batch) scores = torch.max(classification, dim=2, keepdim=True)[0] scores_over_thresh = (scores > 0.05)[0, :, 0] if scores_over_thresh.sum() == 0: return [torch.zeros(0), torch.zeros(0), torch.zeros(0, 4)] classification = classification[:, scores_over_thresh, :] transformed_anchors = transformed_anchors[:, scores_over_thresh, :] scores = scores[:, scores_over_thresh, :] anchors_nms_idx = nms(torch.cat([transformed_anchors, scores], dim=2)[0, :, :], 0.5) nms_scores, nms_class = classification[0, anchors_nms_idx, :].max(dim=1) return [nms_scores, nms_class, transformed_anchors[0, anchors_nms_idx, :]]
def freeze_bn(self)
-
Expand source code
def freeze_bn(self): for m in self.modules(): if isinstance(m, nn.BatchNorm2d): m.eval()
class EfficientNet
-
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:
to
, etc.Initializes internal Module state, shared by both nn.Module and ScriptModule.
Expand source code
class EfficientNet(nn.Module): def __init__(self, ): super(EfficientNet, self).__init__() model = EffNet.from_pretrained('efficientnet-b0') del model._conv_head del model._bn1 del model._avg_pooling del model._dropout del model._fc self.model = model def forward(self, x): x = self.model._swish(self.model._bn0(self.model._conv_stem(x))) feature_maps = [] for idx, block in enumerate(self.model._blocks): drop_connect_rate = self.model._global_params.drop_connect_rate if drop_connect_rate: drop_connect_rate *= float(idx) / len(self.model._blocks) x = block(x, drop_connect_rate=drop_connect_rate) if block._depthwise_conv.stride == [2, 2]: feature_maps.append(x) return feature_maps[1:]
Ancestors
- torch.nn.modules.module.Module
Methods
def forward(self, x)
-
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the :class:
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.Expand source code
def forward(self, x): x = self.model._swish(self.model._bn0(self.model._conv_stem(x))) feature_maps = [] for idx, block in enumerate(self.model._blocks): drop_connect_rate = self.model._global_params.drop_connect_rate if drop_connect_rate: drop_connect_rate *= float(idx) / len(self.model._blocks) x = block(x, drop_connect_rate=drop_connect_rate) if block._depthwise_conv.stride == [2, 2]: feature_maps.append(x) return feature_maps[1:]
class Regressor (in_channels, num_anchors, num_layers)
-
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:
to
, etc.Initializes internal Module state, shared by both nn.Module and ScriptModule.
Expand source code
class Regressor(nn.Module): def __init__(self, in_channels, num_anchors, num_layers): super(Regressor, self).__init__() layers = [] for _ in range(num_layers): layers.append(nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)) layers.append(nn.ReLU(True)) self.layers = nn.Sequential(*layers) self.header = nn.Conv2d(in_channels, num_anchors * 4, kernel_size=3, stride=1, padding=1) def forward(self, inputs): inputs = self.layers(inputs) inputs = self.header(inputs) output = inputs.permute(0, 2, 3, 1) return output.contiguous().view(output.shape[0], -1, 4)
Ancestors
- torch.nn.modules.module.Module
Methods
def forward(self, inputs)
-
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the :class:
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.Expand source code
def forward(self, inputs): inputs = self.layers(inputs) inputs = self.header(inputs) output = inputs.permute(0, 2, 3, 1) return output.contiguous().view(output.shape[0], -1, 4)