Module 4_efficientdet.lib.src.dataset
Expand source code
import os
import torch
import numpy as np
from torch.utils.data import Dataset, DataLoader
from pycocotools.coco import COCO
import cv2
class CocoDataset(Dataset):
    def __init__(self, root_dir, img_dir="images", set_dir='train2017', transform=None):
        self.root_dir = root_dir
        self.img_dir = img_dir
        self.set_name = set_dir
        self.transform = transform
        self.coco = COCO(os.path.join(self.root_dir, 'annotations', 'instances_' + self.set_name + '.json'))
        self.image_ids = self.coco.getImgIds()
        self.load_classes()
    def load_classes(self):
        # load class names (name -> label)
        categories = self.coco.loadCats(self.coco.getCatIds())
        categories.sort(key=lambda x: x['id'])
        self.classes = {}
        self.coco_labels = {}
        self.coco_labels_inverse = {}
        for c in categories:
            self.coco_labels[len(self.classes)] = c['id']
            self.coco_labels_inverse[c['id']] = len(self.classes)
            self.classes[c['name']] = len(self.classes)
        # also load the reverse (label -> name)
        self.labels = {}
        for key, value in self.classes.items():
            self.labels[value] = key
    def __len__(self):
        return len(self.image_ids)
    def __getitem__(self, idx):
        img = self.load_image(idx)
        annot = self.load_annotations(idx)
        sample = {'img': img, 'annot': annot}
        if self.transform:
            sample = self.transform(sample)
        return sample
    def load_image(self, image_index):
        image_info = self.coco.loadImgs(self.image_ids[image_index])[0]
        path = os.path.join(self.root_dir, self.img_dir, self.set_name, image_info['file_name'])
        img = cv2.imread(path)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        # if len(img.shape) == 2:
        #     img = skimage.color.gray2rgb(img)
        return img.astype(np.float32) / 255.
    def load_annotations(self, image_index):
        # get ground truth annotations
        annotations_ids = self.coco.getAnnIds(imgIds=self.image_ids[image_index], iscrowd=False)
        annotations = np.zeros((0, 5))
        # some images appear to miss annotations
        if len(annotations_ids) == 0:
            return annotations
        # parse annotations
        coco_annotations = self.coco.loadAnns(annotations_ids)
        for idx, a in enumerate(coco_annotations):
            # some annotations have basically no width / height, skip them
            if a['bbox'][2] < 1 or a['bbox'][3] < 1:
                continue
            annotation = np.zeros((1, 5))
            annotation[0, :4] = a['bbox']
            annotation[0, 4] = self.coco_label_to_label(a['category_id'])
            annotations = np.append(annotations, annotation, axis=0)
        # transform from [x, y, w, h] to [x1, y1, x2, y2]
        annotations[:, 2] = annotations[:, 0] + annotations[:, 2]
        annotations[:, 3] = annotations[:, 1] + annotations[:, 3]
        return annotations
    def coco_label_to_label(self, coco_label):
        return self.coco_labels_inverse[coco_label]
    def label_to_coco_label(self, label):
        return self.coco_labels[label]
    def num_classes(self):
        return len(self.classes)
def collater(data):
    imgs = [s['img'] for s in data]
    annots = [s['annot'] for s in data]
    scales = [s['scale'] for s in data]
    imgs = torch.from_numpy(np.stack(imgs, axis=0))
    max_num_annots = max(annot.shape[0] for annot in annots)
    if max_num_annots > 0:
        annot_padded = torch.ones((len(annots), max_num_annots, 5)) * -1
        if max_num_annots > 0:
            for idx, annot in enumerate(annots):
                if annot.shape[0] > 0:
                    annot_padded[idx, :annot.shape[0], :] = annot
    else:
        annot_padded = torch.ones((len(annots), 1, 5)) * -1
    imgs = imgs.permute(0, 3, 1, 2)
    return {'img': imgs, 'annot': annot_padded, 'scale': scales}
class Resizer(object):
    """Convert ndarrays in sample to Tensors."""
    def __call__(self, sample, common_size=512):
        image, annots = sample['img'], sample['annot']
        height, width, _ = image.shape
        if height > width:
            scale = common_size / height
            resized_height = common_size
            resized_width = int(width * scale)
        else:
            scale = common_size / width
            resized_height = int(height * scale)
            resized_width = common_size
        image = cv2.resize(image, (resized_width, resized_height))
        new_image = np.zeros((common_size, common_size, 3))
        new_image[0:resized_height, 0:resized_width] = image
        annots[:, :4] *= scale
        return {'img': torch.from_numpy(new_image), 'annot': torch.from_numpy(annots), 'scale': scale}
class Augmenter(object):
    """Convert ndarrays in sample to Tensors."""
    def __call__(self, sample, flip_x=0.5):
        if np.random.rand() < flip_x:
            image, annots = sample['img'], sample['annot']
            image = image[:, ::-1, :]
            rows, cols, channels = image.shape
            x1 = annots[:, 0].copy()
            x2 = annots[:, 2].copy()
            x_tmp = x1.copy()
            annots[:, 0] = cols - x2
            annots[:, 2] = cols - x_tmp
            sample = {'img': image, 'annot': annots}
        return sample
class Normalizer(object):
    def __init__(self):
        self.mean = np.array([[[0.485, 0.456, 0.406]]])
        self.std = np.array([[[0.229, 0.224, 0.225]]])
    def __call__(self, sample):
        image, annots = sample['img'], sample['annot']
        return {'img': ((image.astype(np.float32) - self.mean) / self.std), 'annot': annots}Functions
- def collater(data)
- 
Expand source codedef collater(data): imgs = [s['img'] for s in data] annots = [s['annot'] for s in data] scales = [s['scale'] for s in data] imgs = torch.from_numpy(np.stack(imgs, axis=0)) max_num_annots = max(annot.shape[0] for annot in annots) if max_num_annots > 0: annot_padded = torch.ones((len(annots), max_num_annots, 5)) * -1 if max_num_annots > 0: for idx, annot in enumerate(annots): if annot.shape[0] > 0: annot_padded[idx, :annot.shape[0], :] = annot else: annot_padded = torch.ones((len(annots), 1, 5)) * -1 imgs = imgs.permute(0, 3, 1, 2) return {'img': imgs, 'annot': annot_padded, 'scale': scales}
Classes
- class Augmenter
- 
Convert ndarrays in sample to Tensors. Expand source codeclass Augmenter(object): """Convert ndarrays in sample to Tensors.""" def __call__(self, sample, flip_x=0.5): if np.random.rand() < flip_x: image, annots = sample['img'], sample['annot'] image = image[:, ::-1, :] rows, cols, channels = image.shape x1 = annots[:, 0].copy() x2 = annots[:, 2].copy() x_tmp = x1.copy() annots[:, 0] = cols - x2 annots[:, 2] = cols - x_tmp sample = {'img': image, 'annot': annots} return sample
- class CocoDataset (root_dir, img_dir='images', set_dir='train2017', transform=None)
- 
An abstract class representing a :class: Dataset.All datasets that represent a map from keys to data samples should subclass it. All subclasses should overrite :meth: __getitem__, supporting fetching a data sample for a given key. Subclasses could also optionally overwrite :meth:__len__, which is expected to return the size of the dataset by many :class:~torch.utils.data.Samplerimplementations and the default options of :class:~torch.utils.data.DataLoader.Note :class: ~torch.utils.data.DataLoaderby default constructs a index sampler that yields integral indices. To make it work with a map-style dataset with non-integral indices/keys, a custom sampler must be provided.Expand source codeclass CocoDataset(Dataset): def __init__(self, root_dir, img_dir="images", set_dir='train2017', transform=None): self.root_dir = root_dir self.img_dir = img_dir self.set_name = set_dir self.transform = transform self.coco = COCO(os.path.join(self.root_dir, 'annotations', 'instances_' + self.set_name + '.json')) self.image_ids = self.coco.getImgIds() self.load_classes() def load_classes(self): # load class names (name -> label) categories = self.coco.loadCats(self.coco.getCatIds()) categories.sort(key=lambda x: x['id']) self.classes = {} self.coco_labels = {} self.coco_labels_inverse = {} for c in categories: self.coco_labels[len(self.classes)] = c['id'] self.coco_labels_inverse[c['id']] = len(self.classes) self.classes[c['name']] = len(self.classes) # also load the reverse (label -> name) self.labels = {} for key, value in self.classes.items(): self.labels[value] = key def __len__(self): return len(self.image_ids) def __getitem__(self, idx): img = self.load_image(idx) annot = self.load_annotations(idx) sample = {'img': img, 'annot': annot} if self.transform: sample = self.transform(sample) return sample def load_image(self, image_index): image_info = self.coco.loadImgs(self.image_ids[image_index])[0] path = os.path.join(self.root_dir, self.img_dir, self.set_name, image_info['file_name']) img = cv2.imread(path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # if len(img.shape) == 2: # img = skimage.color.gray2rgb(img) return img.astype(np.float32) / 255. def load_annotations(self, image_index): # get ground truth annotations annotations_ids = self.coco.getAnnIds(imgIds=self.image_ids[image_index], iscrowd=False) annotations = np.zeros((0, 5)) # some images appear to miss annotations if len(annotations_ids) == 0: return annotations # parse annotations coco_annotations = self.coco.loadAnns(annotations_ids) for idx, a in enumerate(coco_annotations): # some annotations have basically no width / height, skip them if a['bbox'][2] < 1 or a['bbox'][3] < 1: continue annotation = np.zeros((1, 5)) annotation[0, :4] = a['bbox'] annotation[0, 4] = self.coco_label_to_label(a['category_id']) annotations = np.append(annotations, annotation, axis=0) # transform from [x, y, w, h] to [x1, y1, x2, y2] annotations[:, 2] = annotations[:, 0] + annotations[:, 2] annotations[:, 3] = annotations[:, 1] + annotations[:, 3] return annotations def coco_label_to_label(self, coco_label): return self.coco_labels_inverse[coco_label] def label_to_coco_label(self, label): return self.coco_labels[label] def num_classes(self): return len(self.classes)Ancestors- torch.utils.data.dataset.Dataset
 Methods- def coco_label_to_label(self, coco_label)
- 
Expand source codedef coco_label_to_label(self, coco_label): return self.coco_labels_inverse[coco_label]
- def label_to_coco_label(self, label)
- 
Expand source codedef label_to_coco_label(self, label): return self.coco_labels[label]
- def load_annotations(self, image_index)
- 
Expand source codedef load_annotations(self, image_index): # get ground truth annotations annotations_ids = self.coco.getAnnIds(imgIds=self.image_ids[image_index], iscrowd=False) annotations = np.zeros((0, 5)) # some images appear to miss annotations if len(annotations_ids) == 0: return annotations # parse annotations coco_annotations = self.coco.loadAnns(annotations_ids) for idx, a in enumerate(coco_annotations): # some annotations have basically no width / height, skip them if a['bbox'][2] < 1 or a['bbox'][3] < 1: continue annotation = np.zeros((1, 5)) annotation[0, :4] = a['bbox'] annotation[0, 4] = self.coco_label_to_label(a['category_id']) annotations = np.append(annotations, annotation, axis=0) # transform from [x, y, w, h] to [x1, y1, x2, y2] annotations[:, 2] = annotations[:, 0] + annotations[:, 2] annotations[:, 3] = annotations[:, 1] + annotations[:, 3] return annotations
- def load_classes(self)
- 
Expand source codedef load_classes(self): # load class names (name -> label) categories = self.coco.loadCats(self.coco.getCatIds()) categories.sort(key=lambda x: x['id']) self.classes = {} self.coco_labels = {} self.coco_labels_inverse = {} for c in categories: self.coco_labels[len(self.classes)] = c['id'] self.coco_labels_inverse[c['id']] = len(self.classes) self.classes[c['name']] = len(self.classes) # also load the reverse (label -> name) self.labels = {} for key, value in self.classes.items(): self.labels[value] = key
- def load_image(self, image_index)
- 
Expand source codedef load_image(self, image_index): image_info = self.coco.loadImgs(self.image_ids[image_index])[0] path = os.path.join(self.root_dir, self.img_dir, self.set_name, image_info['file_name']) img = cv2.imread(path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # if len(img.shape) == 2: # img = skimage.color.gray2rgb(img) return img.astype(np.float32) / 255.
- def num_classes(self)
- 
Expand source codedef num_classes(self): return len(self.classes)
 
- class Normalizer
- 
Expand source codeclass Normalizer(object): def __init__(self): self.mean = np.array([[[0.485, 0.456, 0.406]]]) self.std = np.array([[[0.229, 0.224, 0.225]]]) def __call__(self, sample): image, annots = sample['img'], sample['annot'] return {'img': ((image.astype(np.float32) - self.mean) / self.std), 'annot': annots}
- class Resizer
- 
Convert ndarrays in sample to Tensors. Expand source codeclass Resizer(object): """Convert ndarrays in sample to Tensors.""" def __call__(self, sample, common_size=512): image, annots = sample['img'], sample['annot'] height, width, _ = image.shape if height > width: scale = common_size / height resized_height = common_size resized_width = int(width * scale) else: scale = common_size / width resized_height = int(height * scale) resized_width = common_size image = cv2.resize(image, (resized_width, resized_height)) new_image = np.zeros((common_size, common_size, 3)) new_image[0:resized_height, 0:resized_width] = image annots[:, :4] *= scale return {'img': torch.from_numpy(new_image), 'annot': torch.from_numpy(annots), 'scale': scale}