Module 3_mxrcnn.lib.mx-rcnn.symnet.symbol_resnet
Expand source code
import mxnet as mx
from . import proposal_target
eps=2e-5
use_global_stats=True
workspace=1024
def residual_unit(data, num_filter, stride, dim_match, name):
bn1 = mx.sym.BatchNorm(data=data, fix_gamma=False, eps=eps, use_global_stats=use_global_stats, name=name + '_bn1')
act1 = mx.sym.Activation(data=bn1, act_type='relu', name=name + '_relu1')
conv1 = mx.sym.Convolution(data=act1, num_filter=int(num_filter * 0.25), kernel=(1, 1), stride=(1, 1), pad=(0, 0),
no_bias=True, workspace=workspace, name=name + '_conv1')
bn2 = mx.sym.BatchNorm(data=conv1, fix_gamma=False, eps=eps, use_global_stats=use_global_stats, name=name + '_bn2')
act2 = mx.sym.Activation(data=bn2, act_type='relu', name=name + '_relu2')
conv2 = mx.sym.Convolution(data=act2, num_filter=int(num_filter * 0.25), kernel=(3, 3), stride=stride, pad=(1, 1),
no_bias=True, workspace=workspace, name=name + '_conv2')
bn3 = mx.sym.BatchNorm(data=conv2, fix_gamma=False, eps=eps, use_global_stats=use_global_stats, name=name + '_bn3')
act3 = mx.sym.Activation(data=bn3, act_type='relu', name=name + '_relu3')
conv3 = mx.sym.Convolution(data=act3, num_filter=num_filter, kernel=(1, 1), stride=(1, 1), pad=(0, 0), no_bias=True,
workspace=workspace, name=name + '_conv3')
if dim_match:
shortcut = data
else:
shortcut = mx.sym.Convolution(data=act1, num_filter=num_filter, kernel=(1, 1), stride=stride, no_bias=True,
workspace=workspace, name=name + '_sc')
sum = mx.sym.ElementWiseSum(*[conv3, shortcut], name=name + '_plus')
return sum
def get_resnet_feature(data, units, filter_list):
# res1
data_bn = mx.sym.BatchNorm(data=data, fix_gamma=True, eps=eps, use_global_stats=use_global_stats, name='bn_data')
conv0 = mx.sym.Convolution(data=data_bn, num_filter=64, kernel=(7, 7), stride=(2, 2), pad=(3, 3),
no_bias=True, name="conv0", workspace=workspace)
bn0 = mx.sym.BatchNorm(data=conv0, fix_gamma=False, eps=eps, use_global_stats=use_global_stats, name='bn0')
relu0 = mx.sym.Activation(data=bn0, act_type='relu', name='relu0')
pool0 = mx.symbol.Pooling(data=relu0, kernel=(3, 3), stride=(2, 2), pad=(1, 1), pool_type='max', name='pool0')
# res2
unit = residual_unit(data=pool0, num_filter=filter_list[0], stride=(1, 1), dim_match=False, name='stage1_unit1')
for i in range(2, units[0] + 1):
unit = residual_unit(data=unit, num_filter=filter_list[0], stride=(1, 1), dim_match=True, name='stage1_unit%s' % i)
# res3
unit = residual_unit(data=unit, num_filter=filter_list[1], stride=(2, 2), dim_match=False, name='stage2_unit1')
for i in range(2, units[1] + 1):
unit = residual_unit(data=unit, num_filter=filter_list[1], stride=(1, 1), dim_match=True, name='stage2_unit%s' % i)
# res4
unit = residual_unit(data=unit, num_filter=filter_list[2], stride=(2, 2), dim_match=False, name='stage3_unit1')
for i in range(2, units[2] + 1):
unit = residual_unit(data=unit, num_filter=filter_list[2], stride=(1, 1), dim_match=True, name='stage3_unit%s' % i)
return unit
def get_resnet_top_feature(data, units, filter_list):
unit = residual_unit(data=data, num_filter=filter_list[3], stride=(2, 2), dim_match=False, name='stage4_unit1')
for i in range(2, units[3] + 1):
unit = residual_unit(data=unit, num_filter=filter_list[3], stride=(1, 1), dim_match=True, name='stage4_unit%s' % i)
bn1 = mx.sym.BatchNorm(data=unit, fix_gamma=False, eps=eps, use_global_stats=use_global_stats, name='bn1')
relu1 = mx.sym.Activation(data=bn1, act_type='relu', name='relu1')
pool1 = mx.symbol.Pooling(data=relu1, global_pool=True, kernel=(7, 7), pool_type='avg', name='pool1')
return pool1
def get_resnet_train(anchor_scales, anchor_ratios, rpn_feature_stride,
rpn_pre_topk, rpn_post_topk, rpn_nms_thresh, rpn_min_size, rpn_batch_rois,
num_classes, rcnn_feature_stride, rcnn_pooled_size, rcnn_batch_size,
rcnn_batch_rois, rcnn_fg_fraction, rcnn_fg_overlap, rcnn_bbox_stds,
units, filter_list):
num_anchors = len(anchor_scales) * len(anchor_ratios)
data = mx.symbol.Variable(name="data")
im_info = mx.symbol.Variable(name="im_info")
gt_boxes = mx.symbol.Variable(name="gt_boxes")
rpn_label = mx.symbol.Variable(name='label')
rpn_bbox_target = mx.symbol.Variable(name='bbox_target')
rpn_bbox_weight = mx.symbol.Variable(name='bbox_weight')
# shared convolutional layers
conv_feat = get_resnet_feature(data, units=units, filter_list=filter_list)
# rpn feature
rpn_conv = mx.symbol.Convolution(
data=conv_feat, kernel=(3, 3), pad=(1, 1), num_filter=512, name="rpn_conv_3x3")
rpn_relu = mx.symbol.Activation(data=rpn_conv, act_type="relu", name="rpn_relu")
# rpn classification
rpn_cls_score = mx.symbol.Convolution(
data=rpn_relu, kernel=(1, 1), pad=(0, 0), num_filter=2 * num_anchors, name="rpn_cls_score")
rpn_cls_score_reshape = mx.symbol.Reshape(
data=rpn_cls_score, shape=(0, 2, -1, 0), name="rpn_cls_score_reshape")
rpn_cls_prob = mx.symbol.SoftmaxOutput(data=rpn_cls_score_reshape, label=rpn_label, multi_output=True,
normalization='valid', use_ignore=True, ignore_label=-1, name="rpn_cls_prob")
rpn_cls_act = mx.symbol.softmax(
data=rpn_cls_score_reshape, axis=1, name="rpn_cls_act")
rpn_cls_act_reshape = mx.symbol.Reshape(
data=rpn_cls_act, shape=(0, 2 * num_anchors, -1, 0), name='rpn_cls_act_reshape')
# rpn bbox regression
rpn_bbox_pred = mx.symbol.Convolution(
data=rpn_relu, kernel=(1, 1), pad=(0, 0), num_filter=4 * num_anchors, name="rpn_bbox_pred")
rpn_bbox_loss_ = rpn_bbox_weight * mx.symbol.smooth_l1(name='rpn_bbox_loss_', scalar=3.0, data=(rpn_bbox_pred - rpn_bbox_target))
rpn_bbox_loss = mx.sym.MakeLoss(name='rpn_bbox_loss', data=rpn_bbox_loss_, grad_scale=1.0 / rpn_batch_rois)
# rpn proposal
rois = mx.symbol.contrib.MultiProposal(
cls_prob=rpn_cls_act_reshape, bbox_pred=rpn_bbox_pred, im_info=im_info, name='rois',
feature_stride=rpn_feature_stride, scales=anchor_scales, ratios=anchor_ratios,
rpn_pre_nms_top_n=rpn_pre_topk, rpn_post_nms_top_n=rpn_post_topk,
threshold=rpn_nms_thresh, rpn_min_size=rpn_min_size)
# rcnn roi proposal target
group = mx.symbol.Custom(rois=rois, gt_boxes=gt_boxes, op_type='proposal_target',
num_classes=num_classes, batch_images=rcnn_batch_size,
batch_rois=rcnn_batch_rois, fg_fraction=rcnn_fg_fraction,
fg_overlap=rcnn_fg_overlap, box_stds=rcnn_bbox_stds)
rois = group[0]
label = group[1]
bbox_target = group[2]
bbox_weight = group[3]
# rcnn roi pool
roi_pool = mx.symbol.ROIPooling(
name='roi_pool', data=conv_feat, rois=rois, pooled_size=rcnn_pooled_size, spatial_scale=1.0 / rcnn_feature_stride)
# rcnn top feature
top_feat = get_resnet_top_feature(roi_pool, units=units, filter_list=filter_list)
# rcnn classification
cls_score = mx.symbol.FullyConnected(name='cls_score', data=top_feat, num_hidden=num_classes)
cls_prob = mx.symbol.SoftmaxOutput(name='cls_prob', data=cls_score, label=label, normalization='batch')
# rcnn bbox regression
bbox_pred = mx.symbol.FullyConnected(name='bbox_pred', data=top_feat, num_hidden=num_classes * 4)
bbox_loss_ = bbox_weight * mx.symbol.smooth_l1(name='bbox_loss_', scalar=1.0, data=(bbox_pred - bbox_target))
bbox_loss = mx.sym.MakeLoss(name='bbox_loss', data=bbox_loss_, grad_scale=1.0 / rcnn_batch_rois)
# reshape output
label = mx.symbol.Reshape(data=label, shape=(rcnn_batch_size, -1), name='label_reshape')
cls_prob = mx.symbol.Reshape(data=cls_prob, shape=(rcnn_batch_size, -1, num_classes), name='cls_prob_reshape')
bbox_loss = mx.symbol.Reshape(data=bbox_loss, shape=(rcnn_batch_size, -1, 4 * num_classes), name='bbox_loss_reshape')
# group output
group = mx.symbol.Group([rpn_cls_prob, rpn_bbox_loss, cls_prob, bbox_loss, mx.symbol.BlockGrad(label)])
return group
def get_resnet_test(anchor_scales, anchor_ratios, rpn_feature_stride,
rpn_pre_topk, rpn_post_topk, rpn_nms_thresh, rpn_min_size,
num_classes, rcnn_feature_stride, rcnn_pooled_size, rcnn_batch_size,
units, filter_list):
num_anchors = len(anchor_scales) * len(anchor_ratios)
data = mx.symbol.Variable(name="data")
im_info = mx.symbol.Variable(name="im_info")
# shared convolutional layers
conv_feat = get_resnet_feature(data, units=units, filter_list=filter_list)
# rpn feature
rpn_conv = mx.symbol.Convolution(
data=conv_feat, kernel=(3, 3), pad=(1, 1), num_filter=512, name="rpn_conv_3x3")
rpn_relu = mx.symbol.Activation(data=rpn_conv, act_type="relu", name="rpn_relu")
# rpn classification
rpn_cls_score = mx.symbol.Convolution(
data=rpn_relu, kernel=(1, 1), pad=(0, 0), num_filter=2 * num_anchors, name="rpn_cls_score")
rpn_cls_score_reshape = mx.symbol.Reshape(
data=rpn_cls_score, shape=(0, 2, -1, 0), name="rpn_cls_score_reshape")
rpn_cls_act = mx.symbol.softmax(
data=rpn_cls_score_reshape, axis=1, name="rpn_cls_act")
rpn_cls_act_reshape = mx.symbol.Reshape(
data=rpn_cls_act, shape=(0, 2 * num_anchors, -1, 0), name='rpn_cls_act_reshape')
# rpn bbox regression
rpn_bbox_pred = mx.symbol.Convolution(
data=rpn_relu, kernel=(1, 1), pad=(0, 0), num_filter=4 * num_anchors, name="rpn_bbox_pred")
# rpn proposal
rois = mx.symbol.contrib.MultiProposal(
cls_prob=rpn_cls_act_reshape, bbox_pred=rpn_bbox_pred, im_info=im_info, name='rois',
feature_stride=rpn_feature_stride, scales=anchor_scales, ratios=anchor_ratios,
rpn_pre_nms_top_n=rpn_pre_topk, rpn_post_nms_top_n=rpn_post_topk,
threshold=rpn_nms_thresh, rpn_min_size=rpn_min_size)
# rcnn roi pool
roi_pool = mx.symbol.ROIPooling(
name='roi_pool', data=conv_feat, rois=rois, pooled_size=rcnn_pooled_size, spatial_scale=1.0 / rcnn_feature_stride)
# rcnn top feature
top_feat = get_resnet_top_feature(roi_pool, units=units, filter_list=filter_list)
# rcnn classification
cls_score = mx.symbol.FullyConnected(name='cls_score', data=top_feat, num_hidden=num_classes)
cls_prob = mx.symbol.softmax(name='cls_prob', data=cls_score)
# rcnn bbox regression
bbox_pred = mx.symbol.FullyConnected(name='bbox_pred', data=top_feat, num_hidden=num_classes * 4)
# reshape output
cls_prob = mx.symbol.Reshape(data=cls_prob, shape=(rcnn_batch_size, -1, num_classes), name='cls_prob_reshape')
bbox_pred = mx.symbol.Reshape(data=bbox_pred, shape=(rcnn_batch_size, -1, 4 * num_classes), name='bbox_pred_reshape')
# group output
group = mx.symbol.Group([rois, cls_prob, bbox_pred])
return group
Functions
def get_resnet_feature(data, units, filter_list)
-
Expand source code
def get_resnet_feature(data, units, filter_list): # res1 data_bn = mx.sym.BatchNorm(data=data, fix_gamma=True, eps=eps, use_global_stats=use_global_stats, name='bn_data') conv0 = mx.sym.Convolution(data=data_bn, num_filter=64, kernel=(7, 7), stride=(2, 2), pad=(3, 3), no_bias=True, name="conv0", workspace=workspace) bn0 = mx.sym.BatchNorm(data=conv0, fix_gamma=False, eps=eps, use_global_stats=use_global_stats, name='bn0') relu0 = mx.sym.Activation(data=bn0, act_type='relu', name='relu0') pool0 = mx.symbol.Pooling(data=relu0, kernel=(3, 3), stride=(2, 2), pad=(1, 1), pool_type='max', name='pool0') # res2 unit = residual_unit(data=pool0, num_filter=filter_list[0], stride=(1, 1), dim_match=False, name='stage1_unit1') for i in range(2, units[0] + 1): unit = residual_unit(data=unit, num_filter=filter_list[0], stride=(1, 1), dim_match=True, name='stage1_unit%s' % i) # res3 unit = residual_unit(data=unit, num_filter=filter_list[1], stride=(2, 2), dim_match=False, name='stage2_unit1') for i in range(2, units[1] + 1): unit = residual_unit(data=unit, num_filter=filter_list[1], stride=(1, 1), dim_match=True, name='stage2_unit%s' % i) # res4 unit = residual_unit(data=unit, num_filter=filter_list[2], stride=(2, 2), dim_match=False, name='stage3_unit1') for i in range(2, units[2] + 1): unit = residual_unit(data=unit, num_filter=filter_list[2], stride=(1, 1), dim_match=True, name='stage3_unit%s' % i) return unit
def get_resnet_test(anchor_scales, anchor_ratios, rpn_feature_stride, rpn_pre_topk, rpn_post_topk, rpn_nms_thresh, rpn_min_size, num_classes, rcnn_feature_stride, rcnn_pooled_size, rcnn_batch_size, units, filter_list)
-
Expand source code
def get_resnet_test(anchor_scales, anchor_ratios, rpn_feature_stride, rpn_pre_topk, rpn_post_topk, rpn_nms_thresh, rpn_min_size, num_classes, rcnn_feature_stride, rcnn_pooled_size, rcnn_batch_size, units, filter_list): num_anchors = len(anchor_scales) * len(anchor_ratios) data = mx.symbol.Variable(name="data") im_info = mx.symbol.Variable(name="im_info") # shared convolutional layers conv_feat = get_resnet_feature(data, units=units, filter_list=filter_list) # rpn feature rpn_conv = mx.symbol.Convolution( data=conv_feat, kernel=(3, 3), pad=(1, 1), num_filter=512, name="rpn_conv_3x3") rpn_relu = mx.symbol.Activation(data=rpn_conv, act_type="relu", name="rpn_relu") # rpn classification rpn_cls_score = mx.symbol.Convolution( data=rpn_relu, kernel=(1, 1), pad=(0, 0), num_filter=2 * num_anchors, name="rpn_cls_score") rpn_cls_score_reshape = mx.symbol.Reshape( data=rpn_cls_score, shape=(0, 2, -1, 0), name="rpn_cls_score_reshape") rpn_cls_act = mx.symbol.softmax( data=rpn_cls_score_reshape, axis=1, name="rpn_cls_act") rpn_cls_act_reshape = mx.symbol.Reshape( data=rpn_cls_act, shape=(0, 2 * num_anchors, -1, 0), name='rpn_cls_act_reshape') # rpn bbox regression rpn_bbox_pred = mx.symbol.Convolution( data=rpn_relu, kernel=(1, 1), pad=(0, 0), num_filter=4 * num_anchors, name="rpn_bbox_pred") # rpn proposal rois = mx.symbol.contrib.MultiProposal( cls_prob=rpn_cls_act_reshape, bbox_pred=rpn_bbox_pred, im_info=im_info, name='rois', feature_stride=rpn_feature_stride, scales=anchor_scales, ratios=anchor_ratios, rpn_pre_nms_top_n=rpn_pre_topk, rpn_post_nms_top_n=rpn_post_topk, threshold=rpn_nms_thresh, rpn_min_size=rpn_min_size) # rcnn roi pool roi_pool = mx.symbol.ROIPooling( name='roi_pool', data=conv_feat, rois=rois, pooled_size=rcnn_pooled_size, spatial_scale=1.0 / rcnn_feature_stride) # rcnn top feature top_feat = get_resnet_top_feature(roi_pool, units=units, filter_list=filter_list) # rcnn classification cls_score = mx.symbol.FullyConnected(name='cls_score', data=top_feat, num_hidden=num_classes) cls_prob = mx.symbol.softmax(name='cls_prob', data=cls_score) # rcnn bbox regression bbox_pred = mx.symbol.FullyConnected(name='bbox_pred', data=top_feat, num_hidden=num_classes * 4) # reshape output cls_prob = mx.symbol.Reshape(data=cls_prob, shape=(rcnn_batch_size, -1, num_classes), name='cls_prob_reshape') bbox_pred = mx.symbol.Reshape(data=bbox_pred, shape=(rcnn_batch_size, -1, 4 * num_classes), name='bbox_pred_reshape') # group output group = mx.symbol.Group([rois, cls_prob, bbox_pred]) return group
def get_resnet_top_feature(data, units, filter_list)
-
Expand source code
def get_resnet_top_feature(data, units, filter_list): unit = residual_unit(data=data, num_filter=filter_list[3], stride=(2, 2), dim_match=False, name='stage4_unit1') for i in range(2, units[3] + 1): unit = residual_unit(data=unit, num_filter=filter_list[3], stride=(1, 1), dim_match=True, name='stage4_unit%s' % i) bn1 = mx.sym.BatchNorm(data=unit, fix_gamma=False, eps=eps, use_global_stats=use_global_stats, name='bn1') relu1 = mx.sym.Activation(data=bn1, act_type='relu', name='relu1') pool1 = mx.symbol.Pooling(data=relu1, global_pool=True, kernel=(7, 7), pool_type='avg', name='pool1') return pool1
def get_resnet_train(anchor_scales, anchor_ratios, rpn_feature_stride, rpn_pre_topk, rpn_post_topk, rpn_nms_thresh, rpn_min_size, rpn_batch_rois, num_classes, rcnn_feature_stride, rcnn_pooled_size, rcnn_batch_size, rcnn_batch_rois, rcnn_fg_fraction, rcnn_fg_overlap, rcnn_bbox_stds, units, filter_list)
-
Expand source code
def get_resnet_train(anchor_scales, anchor_ratios, rpn_feature_stride, rpn_pre_topk, rpn_post_topk, rpn_nms_thresh, rpn_min_size, rpn_batch_rois, num_classes, rcnn_feature_stride, rcnn_pooled_size, rcnn_batch_size, rcnn_batch_rois, rcnn_fg_fraction, rcnn_fg_overlap, rcnn_bbox_stds, units, filter_list): num_anchors = len(anchor_scales) * len(anchor_ratios) data = mx.symbol.Variable(name="data") im_info = mx.symbol.Variable(name="im_info") gt_boxes = mx.symbol.Variable(name="gt_boxes") rpn_label = mx.symbol.Variable(name='label') rpn_bbox_target = mx.symbol.Variable(name='bbox_target') rpn_bbox_weight = mx.symbol.Variable(name='bbox_weight') # shared convolutional layers conv_feat = get_resnet_feature(data, units=units, filter_list=filter_list) # rpn feature rpn_conv = mx.symbol.Convolution( data=conv_feat, kernel=(3, 3), pad=(1, 1), num_filter=512, name="rpn_conv_3x3") rpn_relu = mx.symbol.Activation(data=rpn_conv, act_type="relu", name="rpn_relu") # rpn classification rpn_cls_score = mx.symbol.Convolution( data=rpn_relu, kernel=(1, 1), pad=(0, 0), num_filter=2 * num_anchors, name="rpn_cls_score") rpn_cls_score_reshape = mx.symbol.Reshape( data=rpn_cls_score, shape=(0, 2, -1, 0), name="rpn_cls_score_reshape") rpn_cls_prob = mx.symbol.SoftmaxOutput(data=rpn_cls_score_reshape, label=rpn_label, multi_output=True, normalization='valid', use_ignore=True, ignore_label=-1, name="rpn_cls_prob") rpn_cls_act = mx.symbol.softmax( data=rpn_cls_score_reshape, axis=1, name="rpn_cls_act") rpn_cls_act_reshape = mx.symbol.Reshape( data=rpn_cls_act, shape=(0, 2 * num_anchors, -1, 0), name='rpn_cls_act_reshape') # rpn bbox regression rpn_bbox_pred = mx.symbol.Convolution( data=rpn_relu, kernel=(1, 1), pad=(0, 0), num_filter=4 * num_anchors, name="rpn_bbox_pred") rpn_bbox_loss_ = rpn_bbox_weight * mx.symbol.smooth_l1(name='rpn_bbox_loss_', scalar=3.0, data=(rpn_bbox_pred - rpn_bbox_target)) rpn_bbox_loss = mx.sym.MakeLoss(name='rpn_bbox_loss', data=rpn_bbox_loss_, grad_scale=1.0 / rpn_batch_rois) # rpn proposal rois = mx.symbol.contrib.MultiProposal( cls_prob=rpn_cls_act_reshape, bbox_pred=rpn_bbox_pred, im_info=im_info, name='rois', feature_stride=rpn_feature_stride, scales=anchor_scales, ratios=anchor_ratios, rpn_pre_nms_top_n=rpn_pre_topk, rpn_post_nms_top_n=rpn_post_topk, threshold=rpn_nms_thresh, rpn_min_size=rpn_min_size) # rcnn roi proposal target group = mx.symbol.Custom(rois=rois, gt_boxes=gt_boxes, op_type='proposal_target', num_classes=num_classes, batch_images=rcnn_batch_size, batch_rois=rcnn_batch_rois, fg_fraction=rcnn_fg_fraction, fg_overlap=rcnn_fg_overlap, box_stds=rcnn_bbox_stds) rois = group[0] label = group[1] bbox_target = group[2] bbox_weight = group[3] # rcnn roi pool roi_pool = mx.symbol.ROIPooling( name='roi_pool', data=conv_feat, rois=rois, pooled_size=rcnn_pooled_size, spatial_scale=1.0 / rcnn_feature_stride) # rcnn top feature top_feat = get_resnet_top_feature(roi_pool, units=units, filter_list=filter_list) # rcnn classification cls_score = mx.symbol.FullyConnected(name='cls_score', data=top_feat, num_hidden=num_classes) cls_prob = mx.symbol.SoftmaxOutput(name='cls_prob', data=cls_score, label=label, normalization='batch') # rcnn bbox regression bbox_pred = mx.symbol.FullyConnected(name='bbox_pred', data=top_feat, num_hidden=num_classes * 4) bbox_loss_ = bbox_weight * mx.symbol.smooth_l1(name='bbox_loss_', scalar=1.0, data=(bbox_pred - bbox_target)) bbox_loss = mx.sym.MakeLoss(name='bbox_loss', data=bbox_loss_, grad_scale=1.0 / rcnn_batch_rois) # reshape output label = mx.symbol.Reshape(data=label, shape=(rcnn_batch_size, -1), name='label_reshape') cls_prob = mx.symbol.Reshape(data=cls_prob, shape=(rcnn_batch_size, -1, num_classes), name='cls_prob_reshape') bbox_loss = mx.symbol.Reshape(data=bbox_loss, shape=(rcnn_batch_size, -1, 4 * num_classes), name='bbox_loss_reshape') # group output group = mx.symbol.Group([rpn_cls_prob, rpn_bbox_loss, cls_prob, bbox_loss, mx.symbol.BlockGrad(label)]) return group
def residual_unit(data, num_filter, stride, dim_match, name)
-
Expand source code
def residual_unit(data, num_filter, stride, dim_match, name): bn1 = mx.sym.BatchNorm(data=data, fix_gamma=False, eps=eps, use_global_stats=use_global_stats, name=name + '_bn1') act1 = mx.sym.Activation(data=bn1, act_type='relu', name=name + '_relu1') conv1 = mx.sym.Convolution(data=act1, num_filter=int(num_filter * 0.25), kernel=(1, 1), stride=(1, 1), pad=(0, 0), no_bias=True, workspace=workspace, name=name + '_conv1') bn2 = mx.sym.BatchNorm(data=conv1, fix_gamma=False, eps=eps, use_global_stats=use_global_stats, name=name + '_bn2') act2 = mx.sym.Activation(data=bn2, act_type='relu', name=name + '_relu2') conv2 = mx.sym.Convolution(data=act2, num_filter=int(num_filter * 0.25), kernel=(3, 3), stride=stride, pad=(1, 1), no_bias=True, workspace=workspace, name=name + '_conv2') bn3 = mx.sym.BatchNorm(data=conv2, fix_gamma=False, eps=eps, use_global_stats=use_global_stats, name=name + '_bn3') act3 = mx.sym.Activation(data=bn3, act_type='relu', name=name + '_relu3') conv3 = mx.sym.Convolution(data=act3, num_filter=num_filter, kernel=(1, 1), stride=(1, 1), pad=(0, 0), no_bias=True, workspace=workspace, name=name + '_conv3') if dim_match: shortcut = data else: shortcut = mx.sym.Convolution(data=act1, num_filter=num_filter, kernel=(1, 1), stride=stride, no_bias=True, workspace=workspace, name=name + '_sc') sum = mx.sym.ElementWiseSum(*[conv3, shortcut], name=name + '_plus') return sum