Module 3_mxrcnn.lib.mx-rcnn.symdata.vis
Expand source code
def vis_detection(im_orig, detections, class_names, thresh=0.7):
"""visualize [cls, conf, x1, y1, x2, y2]"""
import matplotlib.pyplot as plt
import random
plt.imshow(im_orig)
colors = [(random.random(), random.random(), random.random()) for _ in class_names]
for [cls, conf, x1, y1, x2, y2] in detections:
cls = int(cls)
if cls > 0 and conf > thresh:
rect = plt.Rectangle((x1, y1), x2 - x1, y2 - y1,
fill=False, edgecolor=colors[cls], linewidth=3.5)
plt.gca().add_patch(rect)
plt.gca().text(x1, y1 - 2, '{:s} {:.3f}'.format(class_names[cls], conf),
bbox=dict(facecolor=colors[cls], alpha=0.5), fontsize=12, color='white')
plt.show()
def save_detection(im_orig, detections, class_names, thresh=0.7):
"""visualize [cls, conf, x1, y1, x2, y2]"""
import matplotlib.pyplot as plt
import random
plt.imshow(im_orig)
colors = [(random.random(), random.random(), random.random()) for _ in class_names]
for [cls, conf, x1, y1, x2, y2] in detections:
cls = int(cls)
if cls > 0 and conf > thresh:
rect = plt.Rectangle((x1, y1), x2 - x1, y2 - y1,
fill=False, edgecolor=colors[cls], linewidth=3.5)
plt.gca().add_patch(rect)
plt.gca().text(x1, y1 - 2, '{:s} {:.3f}'.format(class_names[cls], conf),
bbox=dict(facecolor=colors[cls], alpha=0.5), fontsize=12, color='white')
plt.savefig("output.png")
Functions
def save_detection(im_orig, detections, class_names, thresh=0.7)
-
visualize [cls, conf, x1, y1, x2, y2]
Expand source code
def save_detection(im_orig, detections, class_names, thresh=0.7): """visualize [cls, conf, x1, y1, x2, y2]""" import matplotlib.pyplot as plt import random plt.imshow(im_orig) colors = [(random.random(), random.random(), random.random()) for _ in class_names] for [cls, conf, x1, y1, x2, y2] in detections: cls = int(cls) if cls > 0 and conf > thresh: rect = plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor=colors[cls], linewidth=3.5) plt.gca().add_patch(rect) plt.gca().text(x1, y1 - 2, '{:s} {:.3f}'.format(class_names[cls], conf), bbox=dict(facecolor=colors[cls], alpha=0.5), fontsize=12, color='white') plt.savefig("output.png")
def vis_detection(im_orig, detections, class_names, thresh=0.7)
-
visualize [cls, conf, x1, y1, x2, y2]
Expand source code
def vis_detection(im_orig, detections, class_names, thresh=0.7): """visualize [cls, conf, x1, y1, x2, y2]""" import matplotlib.pyplot as plt import random plt.imshow(im_orig) colors = [(random.random(), random.random(), random.random()) for _ in class_names] for [cls, conf, x1, y1, x2, y2] in detections: cls = int(cls) if cls > 0 and conf > thresh: rect = plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor=colors[cls], linewidth=3.5) plt.gca().add_patch(rect) plt.gca().text(x1, y1 - 2, '{:s} {:.3f}'.format(class_names[cls], conf), bbox=dict(facecolor=colors[cls], alpha=0.5), fontsize=12, color='white') plt.show()