Module 3_mxrcnn.lib.mx-rcnn.demo
Expand source code
import argparse
import ast
import pprint
import mxnet as mx
from mxnet.module import Module
from symdata.bbox import im_detect
from symdata.loader import load_test, generate_batch
from symdata.vis import vis_detection
from symnet.model import load_param, check_shape
def demo_net(sym, class_names, args):
    # print config
    print('called with args\n{}'.format(pprint.pformat(vars(args))))
    # setup context
    if args.gpu:
        ctx = mx.gpu(int(args.gpu))
    else:
        ctx = mx.cpu(0)
    # load single test
    im_tensor, im_info, im_orig = load_test(args.image, short=args.img_short_side, max_size=args.img_long_side,
                                            mean=args.img_pixel_means, std=args.img_pixel_stds)
    # generate data batch
    data_batch = generate_batch(im_tensor, im_info)
    # load params
    arg_params, aux_params = load_param(args.params, ctx=ctx)
    # produce shape max possible
    data_names = ['data', 'im_info']
    label_names = None
    data_shapes = [('data', (1, 3, args.img_long_side, args.img_long_side)), ('im_info', (1, 3))]
    label_shapes = None
    # check shapes
    check_shape(sym, data_shapes, arg_params, aux_params)
    # create and bind module
    mod = Module(sym, data_names, label_names, context=ctx)
    mod.bind(data_shapes, label_shapes, for_training=False)
    mod.init_params(arg_params=arg_params, aux_params=aux_params)
    # forward
    mod.forward(data_batch)
    rois, scores, bbox_deltas = mod.get_outputs()
    rois = rois[:, 1:]
    scores = scores[0]
    bbox_deltas = bbox_deltas[0]
    im_info = im_info[0]
    # decode detection
    det = im_detect(rois, scores, bbox_deltas, im_info,
                    bbox_stds=args.rcnn_bbox_stds, nms_thresh=args.rcnn_nms_thresh,
                    conf_thresh=args.rcnn_conf_thresh)
    # print out
    for [cls, conf, x1, y1, x2, y2] in det:
        if cls > 0 and conf > args.vis_thresh:
            print(class_names[int(cls)], conf, [x1, y1, x2, y2])
    # if vis
    if args.vis:
        vis_detection(im_orig, det, class_names, thresh=args.vis_thresh)
def parse_args():
    parser = argparse.ArgumentParser(description='Demonstrate a Faster R-CNN network',
                                     formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument('--network', type=str, default='vgg16', help='base network')
    parser.add_argument('--params', type=str, default='', help='path to trained model')
    parser.add_argument('--dataset', type=str, default='voc', help='training dataset')
    parser.add_argument('--image', type=str, default='', help='path to test image')
    parser.add_argument('--gpu', type=str, default='', help='gpu device eg. 0')
    parser.add_argument('--vis', action='store_true', help='display results')
    parser.add_argument('--vis-thresh', type=float, default=0.7, help='threshold display boxes')
    # faster rcnn params
    parser.add_argument('--img-short-side', type=int, default=600)
    parser.add_argument('--img-long-side', type=int, default=1000)
    parser.add_argument('--img-pixel-means', type=str, default='(0.0, 0.0, 0.0)')
    parser.add_argument('--img-pixel-stds', type=str, default='(1.0, 1.0, 1.0)')
    parser.add_argument('--rpn-feat-stride', type=int, default=16)
    parser.add_argument('--rpn-anchor-scales', type=str, default='(8, 16, 32)')
    parser.add_argument('--rpn-anchor-ratios', type=str, default='(0.5, 1, 2)')
    parser.add_argument('--rpn-pre-nms-topk', type=int, default=6000)
    parser.add_argument('--rpn-post-nms-topk', type=int, default=300)
    parser.add_argument('--rpn-nms-thresh', type=float, default=0.7)
    parser.add_argument('--rpn-min-size', type=int, default=16)
    parser.add_argument('--rcnn-num-classes', type=int, default=21)
    parser.add_argument('--rcnn-feat-stride', type=int, default=16)
    parser.add_argument('--rcnn-pooled-size', type=str, default='(14, 14)')
    parser.add_argument('--rcnn-batch-size', type=int, default=1)
    parser.add_argument('--rcnn-bbox-stds', type=str, default='(0.1, 0.1, 0.2, 0.2)')
    parser.add_argument('--rcnn-nms-thresh', type=float, default=0.3)
    parser.add_argument('--rcnn-conf-thresh', type=float, default=1e-3)
    args = parser.parse_args()
    args.img_pixel_means = ast.literal_eval(args.img_pixel_means)
    args.img_pixel_stds = ast.literal_eval(args.img_pixel_stds)
    args.rpn_anchor_scales = ast.literal_eval(args.rpn_anchor_scales)
    args.rpn_anchor_ratios = ast.literal_eval(args.rpn_anchor_ratios)
    args.rcnn_pooled_size = ast.literal_eval(args.rcnn_pooled_size)
    args.rcnn_bbox_stds = ast.literal_eval(args.rcnn_bbox_stds)
    return args
def get_voc_names(args):
    from symimdb.pascal_voc import PascalVOC
    args.rcnn_num_classes = len(PascalVOC.classes)
    return PascalVOC.classes
def get_coco_names(args):
    from symimdb.coco import coco
    args.rcnn_num_classes = len(coco.classes)
    return coco.classes
def get_vgg16_test(args):
    from symnet.symbol_vgg import get_vgg_test
    if not args.params:
        args.params = 'model/vgg16-0010.params'
    args.img_pixel_means = (123.68, 116.779, 103.939)
    args.img_pixel_stds = (1.0, 1.0, 1.0)
    args.net_fixed_params = ['conv1', 'conv2']
    args.rpn_feat_stride = 16
    args.rcnn_feat_stride = 16
    args.rcnn_pooled_size = (7, 7)
    return get_vgg_test(anchor_scales=args.rpn_anchor_scales, anchor_ratios=args.rpn_anchor_ratios,
                        rpn_feature_stride=args.rpn_feat_stride, rpn_pre_topk=args.rpn_pre_nms_topk,
                        rpn_post_topk=args.rpn_post_nms_topk, rpn_nms_thresh=args.rpn_nms_thresh,
                        rpn_min_size=args.rpn_min_size,
                        num_classes=args.rcnn_num_classes, rcnn_feature_stride=args.rcnn_feat_stride,
                        rcnn_pooled_size=args.rcnn_pooled_size, rcnn_batch_size=args.rcnn_batch_size)
def get_resnet50_test(args):
    from symnet.symbol_resnet import get_resnet_test
    if not args.params:
        args.params = 'model/resnet50-0010.params'
    args.img_pixel_means = (0.0, 0.0, 0.0)
    args.img_pixel_stds = (1.0, 1.0, 1.0)
    args.rpn_feat_stride = 16
    args.rcnn_feat_stride = 16
    args.rcnn_pooled_size = (14, 14)
    return get_resnet_test(anchor_scales=args.rpn_anchor_scales, anchor_ratios=args.rpn_anchor_ratios,
                           rpn_feature_stride=args.rpn_feat_stride, rpn_pre_topk=args.rpn_pre_nms_topk,
                           rpn_post_topk=args.rpn_post_nms_topk, rpn_nms_thresh=args.rpn_nms_thresh,
                           rpn_min_size=args.rpn_min_size,
                           num_classes=args.rcnn_num_classes, rcnn_feature_stride=args.rcnn_feat_stride,
                           rcnn_pooled_size=args.rcnn_pooled_size, rcnn_batch_size=args.rcnn_batch_size,
                           units=(3, 4, 6, 3), filter_list=(256, 512, 1024, 2048))
def get_resnet101_test(args):
    from symnet.symbol_resnet import get_resnet_test
    if not args.params:
        args.params = 'model/resnet101-0010.params'
    args.img_pixel_means = (0.0, 0.0, 0.0)
    args.img_pixel_stds = (1.0, 1.0, 1.0)
    args.rpn_feat_stride = 16
    args.rcnn_feat_stride = 16
    args.rcnn_pooled_size = (14, 14)
    return get_resnet_test(anchor_scales=args.rpn_anchor_scales, anchor_ratios=args.rpn_anchor_ratios,
                           rpn_feature_stride=args.rpn_feat_stride, rpn_pre_topk=args.rpn_pre_nms_topk,
                           rpn_post_topk=args.rpn_post_nms_topk, rpn_nms_thresh=args.rpn_nms_thresh,
                           rpn_min_size=args.rpn_min_size,
                           num_classes=args.rcnn_num_classes, rcnn_feature_stride=args.rcnn_feat_stride,
                           rcnn_pooled_size=args.rcnn_pooled_size, rcnn_batch_size=args.rcnn_batch_size,
                           units=(3, 4, 23, 3), filter_list=(256, 512, 1024, 2048))
def get_class_names(dataset, args):
    datasets = {
        'voc': get_voc_names,
        'coco': get_coco_names
    }
    if dataset not in datasets:
        raise ValueError("dataset {} not supported".format(dataset))
    return datasets[dataset](args)
def get_network(network, args):
    networks = {
        'vgg16': get_vgg16_test,
        'resnet50': get_resnet50_test,
        'resnet101': get_resnet101_test
    }
    if network not in networks:
        raise ValueError("network {} not supported".format(network))
    return networks[network](args)
def main():
    args = parse_args()
    class_names = get_class_names(args.dataset, args)
    sym = get_network(args.network, args)
    demo_net(sym, class_names, args)
if __name__ == '__main__':
    main()Functions
- def demo_net(sym, class_names, args)
- 
Expand source codedef demo_net(sym, class_names, args): # print config print('called with args\n{}'.format(pprint.pformat(vars(args)))) # setup context if args.gpu: ctx = mx.gpu(int(args.gpu)) else: ctx = mx.cpu(0) # load single test im_tensor, im_info, im_orig = load_test(args.image, short=args.img_short_side, max_size=args.img_long_side, mean=args.img_pixel_means, std=args.img_pixel_stds) # generate data batch data_batch = generate_batch(im_tensor, im_info) # load params arg_params, aux_params = load_param(args.params, ctx=ctx) # produce shape max possible data_names = ['data', 'im_info'] label_names = None data_shapes = [('data', (1, 3, args.img_long_side, args.img_long_side)), ('im_info', (1, 3))] label_shapes = None # check shapes check_shape(sym, data_shapes, arg_params, aux_params) # create and bind module mod = Module(sym, data_names, label_names, context=ctx) mod.bind(data_shapes, label_shapes, for_training=False) mod.init_params(arg_params=arg_params, aux_params=aux_params) # forward mod.forward(data_batch) rois, scores, bbox_deltas = mod.get_outputs() rois = rois[:, 1:] scores = scores[0] bbox_deltas = bbox_deltas[0] im_info = im_info[0] # decode detection det = im_detect(rois, scores, bbox_deltas, im_info, bbox_stds=args.rcnn_bbox_stds, nms_thresh=args.rcnn_nms_thresh, conf_thresh=args.rcnn_conf_thresh) # print out for [cls, conf, x1, y1, x2, y2] in det: if cls > 0 and conf > args.vis_thresh: print(class_names[int(cls)], conf, [x1, y1, x2, y2]) # if vis if args.vis: vis_detection(im_orig, det, class_names, thresh=args.vis_thresh)
- def get_class_names(dataset, args)
- 
Expand source codedef get_class_names(dataset, args): datasets = { 'voc': get_voc_names, 'coco': get_coco_names } if dataset not in datasets: raise ValueError("dataset {} not supported".format(dataset)) return datasets[dataset](args)
- def get_coco_names(args)
- 
Expand source codedef get_coco_names(args): from symimdb.coco import coco args.rcnn_num_classes = len(coco.classes) return coco.classes
- def get_network(network, args)
- 
Expand source codedef get_network(network, args): networks = { 'vgg16': get_vgg16_test, 'resnet50': get_resnet50_test, 'resnet101': get_resnet101_test } if network not in networks: raise ValueError("network {} not supported".format(network)) return networks[network](args)
- def get_resnet101_test(args)
- 
Expand source codedef get_resnet101_test(args): from symnet.symbol_resnet import get_resnet_test if not args.params: args.params = 'model/resnet101-0010.params' args.img_pixel_means = (0.0, 0.0, 0.0) args.img_pixel_stds = (1.0, 1.0, 1.0) args.rpn_feat_stride = 16 args.rcnn_feat_stride = 16 args.rcnn_pooled_size = (14, 14) return get_resnet_test(anchor_scales=args.rpn_anchor_scales, anchor_ratios=args.rpn_anchor_ratios, rpn_feature_stride=args.rpn_feat_stride, rpn_pre_topk=args.rpn_pre_nms_topk, rpn_post_topk=args.rpn_post_nms_topk, rpn_nms_thresh=args.rpn_nms_thresh, rpn_min_size=args.rpn_min_size, num_classes=args.rcnn_num_classes, rcnn_feature_stride=args.rcnn_feat_stride, rcnn_pooled_size=args.rcnn_pooled_size, rcnn_batch_size=args.rcnn_batch_size, units=(3, 4, 23, 3), filter_list=(256, 512, 1024, 2048))
- def get_resnet50_test(args)
- 
Expand source codedef get_resnet50_test(args): from symnet.symbol_resnet import get_resnet_test if not args.params: args.params = 'model/resnet50-0010.params' args.img_pixel_means = (0.0, 0.0, 0.0) args.img_pixel_stds = (1.0, 1.0, 1.0) args.rpn_feat_stride = 16 args.rcnn_feat_stride = 16 args.rcnn_pooled_size = (14, 14) return get_resnet_test(anchor_scales=args.rpn_anchor_scales, anchor_ratios=args.rpn_anchor_ratios, rpn_feature_stride=args.rpn_feat_stride, rpn_pre_topk=args.rpn_pre_nms_topk, rpn_post_topk=args.rpn_post_nms_topk, rpn_nms_thresh=args.rpn_nms_thresh, rpn_min_size=args.rpn_min_size, num_classes=args.rcnn_num_classes, rcnn_feature_stride=args.rcnn_feat_stride, rcnn_pooled_size=args.rcnn_pooled_size, rcnn_batch_size=args.rcnn_batch_size, units=(3, 4, 6, 3), filter_list=(256, 512, 1024, 2048))
- def get_vgg16_test(args)
- 
Expand source codedef get_vgg16_test(args): from symnet.symbol_vgg import get_vgg_test if not args.params: args.params = 'model/vgg16-0010.params' args.img_pixel_means = (123.68, 116.779, 103.939) args.img_pixel_stds = (1.0, 1.0, 1.0) args.net_fixed_params = ['conv1', 'conv2'] args.rpn_feat_stride = 16 args.rcnn_feat_stride = 16 args.rcnn_pooled_size = (7, 7) return get_vgg_test(anchor_scales=args.rpn_anchor_scales, anchor_ratios=args.rpn_anchor_ratios, rpn_feature_stride=args.rpn_feat_stride, rpn_pre_topk=args.rpn_pre_nms_topk, rpn_post_topk=args.rpn_post_nms_topk, rpn_nms_thresh=args.rpn_nms_thresh, rpn_min_size=args.rpn_min_size, num_classes=args.rcnn_num_classes, rcnn_feature_stride=args.rcnn_feat_stride, rcnn_pooled_size=args.rcnn_pooled_size, rcnn_batch_size=args.rcnn_batch_size)
- def get_voc_names(args)
- 
Expand source codedef get_voc_names(args): from symimdb.pascal_voc import PascalVOC args.rcnn_num_classes = len(PascalVOC.classes) return PascalVOC.classes
- def main()
- 
Expand source codedef main(): args = parse_args() class_names = get_class_names(args.dataset, args) sym = get_network(args.network, args) demo_net(sym, class_names, args)
- def parse_args()
- 
Expand source codedef parse_args(): parser = argparse.ArgumentParser(description='Demonstrate a Faster R-CNN network', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--network', type=str, default='vgg16', help='base network') parser.add_argument('--params', type=str, default='', help='path to trained model') parser.add_argument('--dataset', type=str, default='voc', help='training dataset') parser.add_argument('--image', type=str, default='', help='path to test image') parser.add_argument('--gpu', type=str, default='', help='gpu device eg. 0') parser.add_argument('--vis', action='store_true', help='display results') parser.add_argument('--vis-thresh', type=float, default=0.7, help='threshold display boxes') # faster rcnn params parser.add_argument('--img-short-side', type=int, default=600) parser.add_argument('--img-long-side', type=int, default=1000) parser.add_argument('--img-pixel-means', type=str, default='(0.0, 0.0, 0.0)') parser.add_argument('--img-pixel-stds', type=str, default='(1.0, 1.0, 1.0)') parser.add_argument('--rpn-feat-stride', type=int, default=16) parser.add_argument('--rpn-anchor-scales', type=str, default='(8, 16, 32)') parser.add_argument('--rpn-anchor-ratios', type=str, default='(0.5, 1, 2)') parser.add_argument('--rpn-pre-nms-topk', type=int, default=6000) parser.add_argument('--rpn-post-nms-topk', type=int, default=300) parser.add_argument('--rpn-nms-thresh', type=float, default=0.7) parser.add_argument('--rpn-min-size', type=int, default=16) parser.add_argument('--rcnn-num-classes', type=int, default=21) parser.add_argument('--rcnn-feat-stride', type=int, default=16) parser.add_argument('--rcnn-pooled-size', type=str, default='(14, 14)') parser.add_argument('--rcnn-batch-size', type=int, default=1) parser.add_argument('--rcnn-bbox-stds', type=str, default='(0.1, 0.1, 0.2, 0.2)') parser.add_argument('--rcnn-nms-thresh', type=float, default=0.3) parser.add_argument('--rcnn-conf-thresh', type=float, default=1e-3) args = parser.parse_args() args.img_pixel_means = ast.literal_eval(args.img_pixel_means) args.img_pixel_stds = ast.literal_eval(args.img_pixel_stds) args.rpn_anchor_scales = ast.literal_eval(args.rpn_anchor_scales) args.rpn_anchor_ratios = ast.literal_eval(args.rpn_anchor_ratios) args.rcnn_pooled_size = ast.literal_eval(args.rcnn_pooled_size) args.rcnn_bbox_stds = ast.literal_eval(args.rcnn_bbox_stds) return args